Khalil AM, Kojima I, Fukunaga W, Okajima M, Mitara. Improved method for avian influenza virus isolation from environmental water samples. Transbound Emerg Dis. 2022 Jun 23
Environmental water-targeted surveillance of migratory aquatic birds at overwintering sites is potentially one of the most effective approaches for understanding the ecology of avian influenza viruses (AIVs). In this study, we improved the method for AIV isolation from environmental water samples by making a minor modification to our previously reported process. We experimentally demonstrated that the AIV recovery efficiency of the modified method was 10-100-fold higher than that of the original method. This improved isolation method allowed us to isolate a considerably larger number of AIV isolates from environmental water samples collected at an overwintering site for tens of thousands of migratory aquatic birds in Japan during the 2018/19 winter season compared with those during previous winter seasons. Genetic and phylogenetic analyses revealed that AIVs of the same subtypes with multiple genetic constellations were circulating in a single overwintering site during a single winter season. These findings indicate that our improved isolation method contributes to enhance environmental water-targeted surveillance and to a better understanding of AIV ecology in migratory aquatic bird populations by monitoring ongoing AIV circulation.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 15 hours ago
- Avian influenza overview September - November 2025 16 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 16 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 18 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 18 hours ago
[Go Top] [Close Window]


