Gromadzka B, Chraniuk M, Hovhannisyan L, Uranowska. Characterization of Immune Response towards Generation of Universal Anti-HA-Stalk Antibodies after Immunization of Broiler Hens with Triple H5N1/NA-HA-M1 VLPs. Viruses. 2022 Mar 30;14(4):730
(1) Background: Avian influenza viruses (AIVs) promptly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by procuring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by infection or vaccination protect only against closely related strains. The immunodominance of the globular head of the main glycoprotein has been shown to mask the immunogenicity of the conserved regions located within the hemagglutinin (HA) protein. It has been shown that the broadly neutralizing universal antibodies recognize the HA2 domain in headless hemagglutinin (HA-stalk). Therefore, the HA-stalk is a highly conserved antigen, which makes it a good candidate to be used in universal vaccine development against AIVs. (2) Methods: Sf9 insect cells were used to produce triple H5N1/NA-HA-M1 influenza virus-like particles (VLPs) via co-expression of neuraminidase, hemagglutinin and matrix proteins from a tricistronic expression cassette. Purified influenza VLPs were used to immunize broiler hens. An in-depth characterization of the immune response was performed with an emphasis on the pool of elicited universal antibodies. (3) Results: Our findings suggest, that after vaccination with triple H5N1/NA-HA-M1 VLPs, hens generate a pool of broad-spectrum universal anti-HA-stalk antibodies. Furthermore, these universal antibodies are able to recognize the mammalian-derived HA-stalk recombinant proteins from homologous H5N1 and heterologous H7N9 AIVs as well as from the heterosubtypic human H1N1 influenza strain. (4) Conclusions: Our findings may suggest that highly pathogenic avian influenza H5 HA protein contain functional epitopes that are attractive targets for the generation of broad-spectrum antibodies against AIVs in their native hosts.
See Also:
Latest articles in those days:
- All-trans retinoic acid increases the pathogenicity of the H9N2 influenza virus in mice 2 days ago
- Genetic and Antigenic Characterization of an Expanding H3 Influenza A Virus Clade in U.S. Swine Visualized by Nextstrain 2 days ago
- A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine 2 days ago
- Epidemiological and virological surveillance of influenza viruses in China during 2020-2021 2 days ago
- Infection of Human Precision-Cut Lung Slices with the Influenza Virus 2 days ago
[Go Top] [Close Window]