-

nihao guest [ sign in / register ]
2022-8-19 22:24:35


Cui H, Che G, de Jong MCM, Li X, Liu Q, Yang J, Te. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Virol J. 2022 Jan 25;19(1):20
submited by kickingbird at Jan, 28, 2022 21:14 PM from Virol J. 2022 Jan 25;19(1):20

Background: Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes.

Methods: The polymerase activity of the viral ribonucleoprotein (RNP) complex as combinations of polymerase-related gene segments derived from different reassortment events was tested in luciferase reporter assays. Reassortant viruses were generated by reverse genetics. Gene segments of the human WSN-H1N1 virus (A/WSN/1933) were replaced by gene segments of the avian A2093-H9N2 virus (A/chicken/Jiangsu/A2093/2011), which were both the Hemagglutinin (HA) and Neuraminidase (NA) gene segments in combination with one of the genes involved in the RNP complex (either PB2, PB1, PA or NP). The growth kinetics and virulence of reassortant viruses were tested on cell lines and mice. The reassortant viruses were then passaged for five generations in MDCK cells and mice lungs. The HA gene of progeny viruses from different passaging paths was analyzed using Next-Generation Sequencing (NGS).

Results: We discovered that the avian PB1 gene of H9N2 increased the polymerase activity of the RNP complex in backbone of H1N1. Reassortant viruses were able to replicate in MDCK and DF1 cells and mice. Analysis of the NGS data showed a higher substitution rate for the PB1-reassortant virus. In particular, for the PB1-reassortant virus, increased virulence for mice was measured by increased body weight loss after infection in mice.

Conclusions: The higher polymerase activity and increased mutation frequency measured for the PB1-reassortant virus suggests that the avian PB1 gene of H9N2 may drive the evolution and adaptation of reassortant viruses to the human host. This study provides novel insights in the characteristics of viruses that may arise by reassortment of human and avian influenza viruses. Surveillance for infections with H9N2 viruses and the emergence of the reassortant viruses in humans is important for pandemic preparedness.

See Also:

Latest articles in those days:

[Go Top]    [Close Window]

Related Pages:
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2022. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn