Ren Y, Long S, Cao S. Molecular Docking and Virtual Screening of an Influenza Virus Inhibitor That Disrupts Protein-Protein Interactions. Viruses. 2021 Nov 5;13(11):2229
Influenza is an acute respiratory infection caused by the influenza virus, but few drugs are available for its treatment. Consequently, researchers have been engaged in efforts to discover new antiviral mechanisms that can lay the foundation for novel anti-influenza drugs. The viral RNA-dependent RNA polymerase (RdRp) is an enzyme that plays an indispensable role in the viral infection process, which is directly linked to the survival of the virus. Methods of inhibiting PB1-PB2 (basic polymerase 1-basic polymerase 2) interactions, which are a key part of RdRp enzyme activity, are integral in the design of novel antiviral drugs, a specific PB1-PB2 interactions inhibitor has not been reported. We have screened Enamine´s database and conducted a parallel screening of multiple docking schemes, followed by simulations of molecular dynamics to determine the structure of a stable ligand-PB1 complex. We also calculated the free energy of binding between the screened compounds and PB1 protein. Ultimately, we screened and identified a potential PB1-PB2 inhibitor using the ADMET prediction model.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 17 hours ago
- Avian influenza overview September - November 2025 17 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 17 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 19 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 20 hours ago
[Go Top] [Close Window]


