Gravel C, Muralidharan A, Duran A, Zetner A, Pfeif. Synthetic vaccine affords full protection to mice against lethal challenge of influenza B virus of both genetic lineages. iScience. 2021 Oct 21;24(11):103328.
A quarter of all seasonal influenza cases are caused by type B influenza virus (IBV) that also dominates periodically. Here, we investigated a recombinant adenovirus vaccine carrying a synthetic HA2 representing the consensus sequence of all IBV hemagglutinins. The vaccine fully protected mice from lethal challenges by IBV of both genetic lineages, demonstrating its breadth of protection. The protection was not mediated by neutralizing antibodies but robust antibody-dependent cellular cytotoxicity and cell-mediated immune responses. Complete protection of the animals required the entire codon-optimized HA2 sequence that elicited a balanced immune response, whereas truncated vaccines without either the fusion peptide or the transmembrane domain reduced the efficacy of protection. Finally, the vaccines did not demonstrate any sign of disease exacerbation following lung pathology and morbidity monitoring. Collectively, these data suggest that it could be worth further exploring this prototype universal vaccine because of its considerable efficacy, safety, and breadth of protection.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 16 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 16 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 16 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 1 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 1 days ago
[Go Top] [Close Window]