Kavian N, Hachim A, Cowling BJ, Valkenburg SA. Repeated influenza vaccination provides cumulative protection from distinct H3N2 viruses. Clin Transl Immunology. 2021 Jun 13;10(6):e1297
Objectives: Current inactivated influenza vaccines provide suboptimal protection against antigenic drift, and repeated annual vaccinations shape antibody specificity but the effect on protection from infection is not well understood.
Methods: We studied the effects of cumulative and staggered vaccinations in mice to determine the effect of influenza vaccination on protection from infection and immune quality.
Results: We found that the timing of vaccination and antigenic change impacted the quality of immune responses. When mice received two different H3N2 strains (A/Hong Kong/4801/2014 and A/Singapore/INFIMH-16-0019/2016) by staggered timing of vaccination, there were higher H3HA antibody and B-cell memory responses than four cumulative vaccinations or when two vaccinations were successive. Interestingly, after challenge with a lethal-drifted H3N2 virus (A/Hong Kong/1/1968), mice with staggered vaccination were unable to produce high titres of antibodies specific to the challenge strain compared to other vaccination regimens because of high levels of vaccine-specific cross-reactive antibodies. All vaccination regimens resulted in protection, in terms of viral loads and survival, from lethal challenge, while lung IL-6 and inflammation were lowest in staggered or cumulative vaccination groups, indicating further advantage.
Conclusion: Our findings help justify influenza vaccination policies that currently recommend repeat vaccination in infants and annual seasonal vaccination, with no evidence for impaired immunity by repeated seasonal vaccination.
Methods: We studied the effects of cumulative and staggered vaccinations in mice to determine the effect of influenza vaccination on protection from infection and immune quality.
Results: We found that the timing of vaccination and antigenic change impacted the quality of immune responses. When mice received two different H3N2 strains (A/Hong Kong/4801/2014 and A/Singapore/INFIMH-16-0019/2016) by staggered timing of vaccination, there were higher H3HA antibody and B-cell memory responses than four cumulative vaccinations or when two vaccinations were successive. Interestingly, after challenge with a lethal-drifted H3N2 virus (A/Hong Kong/1/1968), mice with staggered vaccination were unable to produce high titres of antibodies specific to the challenge strain compared to other vaccination regimens because of high levels of vaccine-specific cross-reactive antibodies. All vaccination regimens resulted in protection, in terms of viral loads and survival, from lethal challenge, while lung IL-6 and inflammation were lowest in staggered or cumulative vaccination groups, indicating further advantage.
Conclusion: Our findings help justify influenza vaccination policies that currently recommend repeat vaccination in infants and annual seasonal vaccination, with no evidence for impaired immunity by repeated seasonal vaccination.
See Also:
Latest articles in those days:
- A human-infecting H10N5 avian influenza virus: clinical features, virus reassortment, receptor-binding affinity, and possible transmission routes 12 hours ago
- [preprint]Pathogenicity and transmissibility of bovine-derived HPAI H5N1 B3.13 virus in pigs 12 hours ago
- [preprint]Defining the transmissible dose 50%, the donor inoculation dose that results in airborne transmission to 50% of contacts, for two pandemic influenza viruses in ferrets 12 hours ago
- [preprint]Examining the Survival of A(H5N1) Influenza Virus in Thermised Whole Cow Milk 13 hours ago
- Cross-species and mammal-to-mammal transmission of clade 2.3.4.4b highly pathogenic avian influenza A/H5N1 with PB2 adaptations 13 hours ago
[Go Top] [Close Window]