Kavian N, Hachim A, Cowling BJ, Valkenburg SA. Repeated influenza vaccination provides cumulative protection from distinct H3N2 viruses. Clin Transl Immunology. 2021 Jun 13;10(6):e1297
Objectives: Current inactivated influenza vaccines provide suboptimal protection against antigenic drift, and repeated annual vaccinations shape antibody specificity but the effect on protection from infection is not well understood.
Methods: We studied the effects of cumulative and staggered vaccinations in mice to determine the effect of influenza vaccination on protection from infection and immune quality.
Results: We found that the timing of vaccination and antigenic change impacted the quality of immune responses. When mice received two different H3N2 strains (A/Hong Kong/4801/2014 and A/Singapore/INFIMH-16-0019/2016) by staggered timing of vaccination, there were higher H3HA antibody and B-cell memory responses than four cumulative vaccinations or when two vaccinations were successive. Interestingly, after challenge with a lethal-drifted H3N2 virus (A/Hong Kong/1/1968), mice with staggered vaccination were unable to produce high titres of antibodies specific to the challenge strain compared to other vaccination regimens because of high levels of vaccine-specific cross-reactive antibodies. All vaccination regimens resulted in protection, in terms of viral loads and survival, from lethal challenge, while lung IL-6 and inflammation were lowest in staggered or cumulative vaccination groups, indicating further advantage.
Conclusion: Our findings help justify influenza vaccination policies that currently recommend repeat vaccination in infants and annual seasonal vaccination, with no evidence for impaired immunity by repeated seasonal vaccination.
Methods: We studied the effects of cumulative and staggered vaccinations in mice to determine the effect of influenza vaccination on protection from infection and immune quality.
Results: We found that the timing of vaccination and antigenic change impacted the quality of immune responses. When mice received two different H3N2 strains (A/Hong Kong/4801/2014 and A/Singapore/INFIMH-16-0019/2016) by staggered timing of vaccination, there were higher H3HA antibody and B-cell memory responses than four cumulative vaccinations or when two vaccinations were successive. Interestingly, after challenge with a lethal-drifted H3N2 virus (A/Hong Kong/1/1968), mice with staggered vaccination were unable to produce high titres of antibodies specific to the challenge strain compared to other vaccination regimens because of high levels of vaccine-specific cross-reactive antibodies. All vaccination regimens resulted in protection, in terms of viral loads and survival, from lethal challenge, while lung IL-6 and inflammation were lowest in staggered or cumulative vaccination groups, indicating further advantage.
Conclusion: Our findings help justify influenza vaccination policies that currently recommend repeat vaccination in infants and annual seasonal vaccination, with no evidence for impaired immunity by repeated seasonal vaccination.
See Also:
Latest articles in those days:
- [preprint]Highly pathogenic avian influenza management in high-density poultry farming areas 1 days ago
- [preprint]Dairy cattle herds mount a characteristic antibody response to highly pathogenic H5N1 avian influenza viruses 1 days ago
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 2 days ago
- Mapping of stakeholders in avian influenza surveillance in Canada 2 days ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 3 days ago
[Go Top] [Close Window]