-

nihao guest [ sign in / register ]
2024-11-23 15:16:53


Zhao T, Asawa K, Masuda T, Honda A, Kushiro K, Cab. Fluorescent polymeric nanoparticle for ratiometric temperature sensing allows real-time monitoring in influenza virus-infected cells. J Colloid Interface Sci. 2021 Jun 1;601:825-832
submited by kickingbird at Jun, 15, 2021 7:25 AM from J Colloid Interface Sci. 2021 Jun 1;601:825-832

Temperature is a key indicator of infection and disease, however, it is difficult to measure at a cellular level. Nanoparticles are applied to measure the cellular temperature, and enhancement of the stability and reliability of the signal and higher biocompatibility are demanded. We have developed fluorescent polymeric nanoparticles loaded with temperature-sensitive units (as rhodamine B) and internal reference units (as coumarin) for imaging and ratiometric sensing of the cellular temperature in the physiological range. The fluorescence signal of the nanoparticles was stable in the bio-environment and the ratiometric sensing strategy could overcome the concentration effect of nanoparticles. The nanoparticles were endocytosed by cells and partially presented in mitochondria. The fluorescence intensity ratio of rhodamine B and coumarin using nanoparticles showed good linear correlations in buffer solutions, cell suspensions, and imaging of living cells. Using the fluorescent polymeric nanoparticles, the change of temperature of cells during influenza virus infection could be individually monitored.

See Also:

Latest articles in those days:

[Go Top]    [Close Window]

Related Pages:
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn