Chen L, Zhu L, Chen J. Human Interferon Inducible Transmembrane Protein 3 (IFITM3) Inhibits Influenza Virus A Replication and Inflammation by Interacting with ABHD16A. Biomed Res Int. 2021 Mar 3;2021:6652147
Studies have shown that human interferon inducible transmembrane protein (hIFITMs) family proteins have broad-spectrum antiviral capabilities. Preliminary studies in our laboratory have tentatively proved that hIFITMs have the effect of inhibiting influenza viruses. In order to further study its mechanism and role in the occurrence and development of influenza A, relevant studies have been carried out. Fluorescence quantitative polymerase chain reaction (PCR) detection technology was used to observe the effect of hIFITM3 on the replication of influenza A virus (IVA) and the interaction with hABHD16A. In HEK293 cells, overexpression of hIFITM3 protein significantly inhibited the replication of IVA at 24 h, 48 h, and 72 h; yeast two-hybrid experiment proved that hIFITM3 interacts with hABHD16A; laser confocal microscopy observations showed that hIFITM3 and hABHD16A colocalized in the cell membrane area; the expression level of inflammation-related factors in cells overexpressing hIFITM3 or hABHD16A was detected by fluorescence quantitative PCR, and the results showed that the mRNA levels of interleukin- (IL-) 1β, IL-6, IL-10, tumor necrosis factor- (TNF-) α, and cyclooxygenase 2 (COX2) were significantly increased. But when hIFITM3/hABHD16A was coexpressed, the mRNA expression levels of these cytokines were significantly reduced except COX2. When influenza virus infected cells coexpressing hIFITM3/hABHD16A, the expression level of inflammatory factors decreased compared with the control group, indicating that hIFITM3 can play an important role in regulating inflammation balance. This study confirmed that hIFITM3 has an effect of inhibiting IVA replication. Furthermore, it was found that hIFITM3 interacts with hABHD16A, following which it can better inhibit the replication of influenza virus and the inflammatory response caused by the disease process.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 4 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 4 days ago
[Go Top] [Close Window]