Gelenter MD, Mandala VS, Niesen MJM, Sharon DA, Dr. Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol. 2021 Mar 12;4(1):338
The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.
See Also:
Latest articles in those days:
- Highly Pathogenic Avian Influenza: Tracking the Progression from IAV (H5N1) to IAV (H7N9) and Preparing for Emerging Challenges 3 hours ago
- Genetic characterization of highly pathogenic avian influenza A/H5N8 virus isolated from commercial poultry farms in Egypt reveals zoonotic potential 3 hours ago
- Cats infected with H5N1 avian influenza - a new infectious disease in Poland 3 hours ago
- [preprint]Influenza A infection accelerates disease-associated microglia formation during physiological aging 3 hours ago
- Chicken PIAS2 enhances H6N2 avian influenza virus replication by promoting SUMOylation of viral NP 3 hours ago
[Go Top] [Close Window]


