Hong Y, Truong AD, Lee J, Vu TH, Lee S, Song KD, L. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Vet Res. 2021 Mar 3;52(1):36
Exosomes are membrane vesicles containing proteins, lipids, DNA, mRNA, and micro RNA (miRNA). Exosomal miRNA from donor cells can regulate the gene expression of recipient cells. Here, Ri chickens were divided into resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) trait by genotyping of Mx and BF2 genes. Then, Ri chickens were infected with H5N1, a highly pathogenic avian influenza virus (HPAIV). Exosomes were purified from blood serum of resistant chickens for small RNA sequencing. Sequencing data were analysed using FastQCv0.11.7, Cutadapt 1.16, miRBase v21, non-coding RNA database, RNAcentral 10.0, and miRDeep2. Differentially expressed miRNAs were determined using statistical methods, including fold-change, exactTest using edgeR, and hierarchical clustering. Target genes were predicted using miRDB. Gene ontology analysis was performed using gProfiler. Twenty miRNAs showed significantly different expression patterns between resistant control and infected chickens. Nine miRNAs were up-regulated and 11 miRNAs were down-regulated in the infected chickens compared with that in the control chickens. In target gene analysis, various immune-related genes, such as cytokines, chemokines, and signalling molecules, were detected. In particular, mitogen-activated protein kinase (MAPK) pathway molecules were highly controlled by differentially expressed miRNAs. The result of qRT-PCR for miRNAs was identical with sequencing data and miRNA expression level was higher in resistant than susceptible chickens. This study will help to better understand the host immune response, particularly exosomal miRNA expression against HPAIV H5N1 and could help to determine biomarkers for disease resistance.
See Also:
Latest articles in those days:
- Assessment of exposure to influenza A viruses in pigs between weaning and market age 2 hours ago
- Virus Neutralization by Human Intravenous Immunoglobulin Against Influenza Virus Subtypes A/H5 and A/H7 1 days ago
- Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone 3 days ago
- Characterization of Four Novel H5N6 Avian Influenza Viruses with the Internal Genes from H5N1 and H9N2 Viruses and Experimental Challenge of Chickens Vaccinated with Current Commercially Available H5 3 days ago
- Metabolic shifts modulate lung injury caused by infection with H1N1 influenza A virus 4 days ago
[Go Top] [Close Window]