Zhang Y, Zheng QC. In Silico Analysis Revealed a Unique Binding but Ineffective Mode of Amantadine to Influenza Virus B M2 Channel. J Phys Chem Lett. 2021 Jan 22:1169-1174
The M2 proton channel of influenza A (AM2) and B (BM2) have a highly conserved function motif, considered as the effective target. As yet, there is no effective drug against BM2. Research showed that AM2 channel blocker, amantadine (AMT), was able to bind to BM2 channel, but AMT lacked inhibition against BM2. Nevertheless, the study of the binding but ineffective mode of AMT to BM2 is challenging. To resolve the challenge and obtain more information for drug design of inhibitors targeting BM2, multiple molecular dynamics simulations were performed. We discovered AMT mainly adopted up binding mode in BM2, involved in a transition flipping from down mode to up mode. Furthermore, we discovered a new key factor to explain ineffective inhibition of AMT to BM2 because of the unmatched spatial geometry between AMT and BM2. Our work could enrich structural feature information on BM2 and provide a new perspective for rational drug design of anti-influenza B.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 4 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 4 days ago
[Go Top] [Close Window]