Song J, Sun H, Sun H, et al. Swine microRNAs ssc-miR-221-3p and ssc-miR-222 restrict the cross-species infection of avian influenza virus. J Virol. 2020;JVI.01700-20
Avian influenza virus (AIV) can cross species barriers to infect humans and other mammals. However, these species-cross transmissions are most often dead-end infection due to host restriction. Current research about host restriction mainly focuses on the barrier of cell membrane, nuclear envelope, and host proteins, whether microRNAs (miRNAs) play a role of host restriction is largely unknown. Herein, we used porcine alveolar macrophage (PAM) cells as a model to elucidate the role of miRNAs in the host range restriction. During AIV infection, 40 dysregulation expressed miRNAs were selected in PAM cells. Among them, two sus scrofa (ssc-, swine) miRNAs, ssc-miR-221-3p and ssc-miR-222, could inhibit the infection and replication of AIV in PAM cells by directly targeting viral genome and inducing cell apoptosis via inhibiting the expression of anti-apoptotic protein HMBOX1. Avian but not swine influenza virus caused upregulated expressions of ssc-miR-221-3p and ssc-miR-222 in PAM cells. We further found that NF-κB P65 was more effectively phosphorylated upon AIV infection and P65 functioned as a transcription activator to regulate the AIV-induced expression of miR-221-3p/222 Importantly, we found that ssc-miR-221-3p and ssc-miR-222 could also be specifically upregulated upon AIV infection in newborn pig tracheal epithelial cells (NPTr) and also exerted anti-AIV function. In summary, our study indicated that miRNAs act as a host barrier during cross-species infection of influenza A virus.IMPORTANCE The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. Host miRNAs can regulate influenza A virus replication, however, the role of miRNAs in host species specificity is unclear. Here we show that the induced expression of ssc-miR-221-3p and ssc-miR-222 in swine cells are modulated by NF-κB P65 phosphorylation in response to AIV infection, but not swine influenza virus infection. ssc-miR-221-3p and ssc-miR-222 exerted antiviral function via targeting viral RNAs and causing apoptosis by inhibiting the expression of HMBOX1 in host cells. These findings uncover miRNAs as a host range restriction factor that limits cross-species infection of influenza A virus.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 4 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 4 days ago
[Go Top] [Close Window]