Ilyushina NA, Lee N, Lugovtsev VY, Kan A, Bovin NV. Adaptation of influenza B virus by serial passage in human airway epithelial cells. Virology. 2020;549:68-76
Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. To understand their adaptation capability, we examined the genetic changes that occurred following 15 serial passages of two influenza B viruses, B/Brisbane/60/2008 and B/Victoria/504/2000, in human epithelial cells. Thirteen distinct amino acid mutations were found in the PB1, PA, hemagglutinin (HA), neuraminidase (NA), and M proteins after serial passage in the human lung epithelial cell line, Calu-3, and normal human bronchial epithelial (NHBE) cells. These changes were associated with significantly decreased viral replication levels. Our results demonstrate that adaptation of influenza B viruses for growth in human airway epithelial cells is partially conferred by selection of HA1, NA, and polymerase mutations that regulate receptor specificity, functional compatibility with the HA protein, and polymerase activity, respectively.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 2 hours ago
- Avian influenza overview September - November 2025 2 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 2 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 4 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 4 hours ago
[Go Top] [Close Window]


