Ayim-Akonor M, Mertens E, May J, Harder T. Exposure of domestic swine to influenza A viruses in Ghana suggests unidirectional, reverse zoonotic transmission at the human-animal interface. Zoonoses Public Health. 2020;10.1111/zph.12751
Influenza A viruses (IAVs) have both zoonotic and anthroponotic potential and are of public and veterinary importance. Swine are intermediate hosts and ´mixing vessels´ for generating reassortants, progenies of which may harbour pandemic propensity. Swine handlers are at the highest risk of becoming infected with IAVs from swine but there is little information on the ecology of IAVs at the human-animal interface in Africa. We analysed and characterized nasal and throat swabs from swine and farmers respectively, for IAVs using RT-qPCR, from swine farms in the Ashanti region, Ghana. Sera were also analysed for IAVs antibodies and serotyped using ELISA and HI assays. IAV was detected in 1.4% (n = 17/1,200) and 2.0% (n = 2/99) of swine and farmers samples, respectively. Viral subtypes H3N2 and H1N1pdm09 were found in human samples. All virus-positive swine samples were subtyped as H1N1pdm09 phylogenetically clustering closely with H1N1pdm09 that circulated among humans during the study period. Phenotypic markers that confer sensitivity to Oseltamivir were found. Serological prevalence of IAVs in swine and farmers by ELISA was 3.2% (n = 38/1,200) and 18.2% (n = 18/99), respectively. Human H1N1pdm09 and H3N2 antibodies were found in both swine and farmers sera. Indigenous swine influenza A viruses and/or antibodies were not detected in swine or farmers samples. Majority (98%, n = 147/150) of farmers reported of not wearing surgical mask and few (4%, n = 6) reported to wear gloves when working. Most (n = 74, 87.7%) farmers reported of working on the farm when experiencing influenza-like illness. Poor husbandry and biosafety practices of farmers could facilitate virus transmission across the human-swine interface. Farmers should be educated on the importance of good farm practices to mitigate influenza transmission at the human-animal interface.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 4 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 4 days ago
[Go Top] [Close Window]