Kato Y, et al. Novel oseltamivir-resistant mutations distant from the active site of influenza B neuraminidase. J Biomol Struct Dyn. 2020 May 14:1-17.
We performed a neuraminidase sequence analysis of thirty-two pediatric patients with influenza B who visited Teikyo University Hospital from January 2016 to March 2017, and found oseltamivir-resistant samples belonging to the Yamagata and Victoria lineages. Comparison with the neuraminidase sequence of oseltamivir-susceptible B/Brisbane/60/2008 revealed 5 common amino acid substitutions in many of these samples. According to the binding free energy calculation, the N340D and E358K substitutions reduced the affinity of oseltamivir to neuraminidase. Unexpectedly, these substitutions were located distant from the oseltamivir-binding site in neuraminidase. According to the molecular dynamics simulations, the N340D substitution rearranged complicated hydrogen bond networks in an extensive surface region of neuraminidase. The E358K substitution extensively altered the electrostatic potential map of the overall neuraminidase structure. Through these novel mechanisms, the N340D and E358K substitutions indirectly influenced the affinity reduction. These results may be useful for designing drugs for the treatment of oseltamivir-resistant virus infections.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 20 hours ago
- Avian influenza overview September - November 2025 20 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 20 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 22 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 23 hours ago
[Go Top] [Close Window]


