Joshi SR, Sharma A, Kim GH, Jang J. Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:1104
A biocompatible, cost-effective, and scalable reduced graphene oxide (rGO) film was obtained from shellac using thermal treatment and its structural, chemical, and electrical properties were investigated. This thermally-decomposed rGO (TrGO) film exhibited good crystallinity, low sheet resistance, and high carbon content. TrGO flakes obtained from the film were dispersed and drop cast onto indium tin oxide/glass electrodes to fabricate label-free electrochemical immunosensors for the quantitative detection of the influenza virus H1N1 via electrochemical impedance spectroscopy. These sensors exhibited high stability and reproducibility, both possibly ascribable to the high adhesion of TrGO due to its phenolic-OH moiety; the limits of detection were 26 and 33 plaque-forming units, respectively, in phosphate-buffered saline and diluted saliva. These cost-effective TrGO-based sensors showed great potential as reliable and robust nanomaterial-based biosensors for widespread clinical applications.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 17 hours ago
- Avian influenza overview September - November 2025 17 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 17 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 19 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 19 hours ago
[Go Top] [Close Window]


