Masuda T, et al. An influenza-derived membrane tension-modulating peptide regulates cell movement and morphology via actin remodeling. Commun Biol. 2019 Jun 26;2(1):243
Tension in cell membranes is closely related to various cellular events, including cell movement and morphogenesis. Therefore, modulation of membrane tension can be a new approach for manipulating cellular events. Here, we show that an amphipathic peptide derived from the influenza M2 protein (M2[45-62]) yields lamellipodia at multiple sites in the cell. Effect of M2[45-62] on cell membrane tension was evaluated by optical tweezer. The membrane tension sensor protein FBP17 was involved in M2[45-62]-driven lamellipodium formation. Lysine-to-arginine substitution in M2[45-62] further enhanced its activity of lamellipodium formation. M2[45-62] had an ability to reduce cell motility, evaluated by scratch wound migration and transwell migration assays. An increase in neurite outgrowth was also observed after treatment with M2[45-62]. The above results suggest the potential of M2[45-62] to modulate cell movement and morphology by modulating cell membrane tension.
See Also:
Latest articles in those days:
- Transmission dynamics of highly pathogenic avian influenza virus at the wildlife-poultry-environmental interface: A case study 22 hours ago
- Influenza A Virus Antibodies in Ducks and Introduction of Highly Pathogenic Influenza A(H5N1) Virus, Tennessee, USA 22 hours ago
- Reassortment of newly emergent clade 2.3.4.4b A(H5N1) highly pathogenic avian influenza A viruses in Bangladesh 22 hours ago
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 4 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 4 days ago
[Go Top] [Close Window]