Xu Y, et al. Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Rep. 2019 Nov 19;29(8):2217-2228.e5.
Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,600 human infections, posing a threat to public health. An emerging concern is whether H7N9 AIVs will cause pandemics among humans. Molecular analysis of hemagglutinin (HA), which is a critical determinant of interspecies transmission, shows that the current H7N9 AIVs are still dual-receptor tropic, indicating limited human-to-human transmission potency. Mutagenesis and structural studies reveal that a G186V substitution is sufficient for H7N9 AIVs to acquire human receptor-binding capacity, and a Q226L substitution would favor binding to both avian and human receptors only when paired with A138/V186/P221 hydrophobic residues. These data suggest a different evolutionary route of H7N9 viruses compared to other AIV-subtype HAs.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 19 hours ago
- Avian influenza overview September - November 2025 19 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 19 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 21 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 21 hours ago
[Go Top] [Close Window]


