Chen Y, Yang Y, Cheng J, Lu J, Hu W. Platelet count and mortality of H7N9 infected patients in Guangdong, China. Platelets. 2019 Sep 11:1-4.
Avian influenza A (H7N9) is a serve zoonosis with a high mortality rate. Timely and effective diagnosis and early warning is crucial for the clinical treatment of H7N9 patients. The previous studies indicated that thrombocytopenia was associated with the prognosis of influenza cases, but the related evidence of platelet change within the course of the disease remains largely insufficient. A total of 130 laboratory-confirmed H7N9 cases and their corresponding medical records from August 2013 to March 2015 were collected from 23 hospitals of 13 cities in Guangdong, China. The results indicated that there was a significant difference between the outcome of H7N9 cases and their average platelet count (PC) including maximum, minimum, range, admission and discharge/death of the PC value. Furthermore, we built a classification and regression tree (CART) model to predict the fatality rate which varied with average PC. There was a 7% chance for a mortality from H7N9 if PC was over 207.0 × 10^9/L, while there was a 46.3% chance of a mortality from H7N9 when PC was between 123.9 × 10^9/L and 207.0 × 10^9/L, and 81.3% chance of a mortality from H7N9 when PC was less than 123.9 × 10^9/L. This study demonstrates that using platelet count to predict the fatality of H7N9 is significant, and lower platelet counts of H7N9 patients were associated with higher risk of mortality of H7N9 patients, which may need to be taken into consideration when planning clinical treatment.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 2 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 14 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]