Nemoto M, et al. A single amino acid change in hemagglutinin reduces the cross-reactivity of antiserum against an equine influenza vaccine strain. Arch Virol. 2019 Jun 21.
Equine influenza virus is an important pathogen for the horse industry because of its economic impact, and vaccination is a key control measure. Our previous work suggested that a mutation at position 144 in the hemagglutinin of Florida sublineage clade 2 viruses reduces the cross-neutralizing activity of antiserum against a former vaccine strain. To confirm this suggestion, here, we generated viruses by reverse genetics. Antibody titers against the mutated viruses were one-tenth to one-sixteenth of those against the former vaccine strain. Our findings confirm that this single amino acid substitution reduces the cross-reactivity of antiserum against this former Japanese vaccine.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 2 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 2 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 2 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]