Staller E, et al. ANP32 proteins are essential for influenza virus replication in human cells. J Virol. 2019 Jun 19.
ANP32 proteins have been implicated in supporting influenza virus replication, but most of the work to date has focused on the ability of avian Anp32 proteins to overcome restriction of avian influenza polymerases in human cells. Using a CRISPR approach we show that human ANP32A and ANP32B are functionally redundant but essential host factors for mammalian-adapted influenza A virus (IAV) and influenza B virus (IBV) replication in human cells. When both proteins are absent from human cells, influenza polymerases are unable to replicate the viral genome, and infectious virus cannot propagate. Provision of exogenous ANP32A or -B recovers polymerase activity and virus growth. We demonstrate that this redundancy is absent in the murine Anp32 orthologues: murine Anp32A is incapable of recovering IAV polymerase activity, while murine Anp32B can. Intriguingly, IBV polymerase is able to use murine Anp32A. We show using a domain swap and point mutations that the LRR 5 region comprises an important functional domain for mammalian ANP32 proteins. Our approach has identified a pair of essential host factors for influenza virus replication and can be harnessed to inform future interventions.Importance Influenza virus is the etiological agent behind some of the most devastating infectious disease pandemics to date, and influenza outbreaks still pose a major threat to public health. Influenza virus polymerase, the molecule that copies the virus RNA genome, hijacks cellular proteins to support its replication. Current anti-influenza drugs are aimed against viral proteins, including the polymerase, but RNA viruses like influenza tend to become resistant to such drugs very rapidly. An alternative strategy is to design therapeutics that target the host proteins that are necessary for virus propagation. Here we show that the human proteins ANP32A and ANP32B are essential for influenza A and B virus replication, such that in their absence cells become impervious to the virus. We map the pro-viral activity of ANP32 proteins to one region in particular, which could inform future intervention.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 2 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 2 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 2 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]