Jia R, et al. Design, synthesis and biological evaluation of "Multi-Site"-binding influenza virus neuraminidase. Eur J Med Chem. 2019 May 30;178:64-80
Encouraged by our earlier discovery of neuraminidase inhibitors targeting 150-cavity or 430-cavity, herein, to yield more potent inhibitors, we designed, synthesized, and biologically evaluated a series of novel oseltamivir derivatives via modification of C-1 and C5-NH2 of oseltamivir by exploiting 150-cavity and/or 430-cavity. Among the synthesized compounds, compound 15e, the most potent N1-selective inhibitor targeting 150-cavity, showed 1.5 and 1.8 times greater activity than oseltamivir carboxylate (OSC) against N1 (H5N1) and N1 (H5N1-H274Y). In cellular assays, 15e also exhibited greater potency than OSC against H5N1 with EC50 of 0.66?μM. In addition, 15e demonstrated low cytotoxicity in vitro and low acute toxicity in mice. Molecular docking studies provided insights into the high potency of 15e against N1 and N1-H274Y mutant NA. Overall, we envisioned that the significant breakthrough in the discovery of potent group-1-specific neuraminidase inhibitors may lead to further investigation of more potent anti-influenza agents.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 2 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 2 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 2 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 2 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]