Reid SM, et al. Two Single Incursions of H7N7 and H5N1 Low Pathogenicity Avian Influenza in U.K. Broiler Breeders During 2015 and 2016. Avian Dis. 2018 Dec 17;63
Low pathogenicity (LP) avian influenza viruses (AIVs) have a natural reservoir in wild birds. These cause few (if any) overt clinical signs, but include H5 and H7 LPAIVs, which are notifiable in poultry. In the European Union, notifiable avian disease (NAD) demands laboratory confirmation with prompt statutory interventions to prevent dissemination of infection to multiple farms. Crucially, for H5 and H7 LPAIVs, movement restrictions and culling limit the further risk of mutation to the corresponding highly pathogenic (HP) H5 and H7 AIVs in gallinaceous poultry. An H7N7 LPAIV outbreak occurred during February 2015 at a broiler breeder chicken premise in England. Full genome sequencing suggested an avian origin closely related to contemporary European H7 LPAIV wild bird strains with no correlates for human adaptation. However, a high similarity of PB2, PB1, and NA genes with H10N7 viruses from European seals during 2014 was observed. An H5N1 LPAIV outbreak during January 2016 affecting broiler breeder chickens in Scotland resulted in rapid within-farm spread. An interesting feature from this case was that although viral tropism occurred in heart and kidney endothelial cells, suggesting HPAIV infection, the H5N1 virus had the molecular cleavage site signature of an LPAIV belonging to an indigenous European H5 lineage. There was no genetic evidence for human adaptation or antiviral drug resistance. The source of the infection was also likely to be via indirect contact with wild birds mediated via fomite spread from the nearby environment. Both LPAIV outbreaks were preceded by local flooding events that attracted wild waterfowl to the premises. Prompt detection of both outbreaks highlighted the value of the "testing to exclude" scheme launched in the United Kingdom for commercial gallinaceous poultry in 2014 as an early warning surveillance mechanism for NAD.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 2 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 2 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 2 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 2 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 2 days ago
[Go Top] [Close Window]