Bonomo ME, Kim RY, Deem MW. Modular epitope binding predicts influenza quasispecies dominance and vaccine effectiveness: Application to 2018/19 season. Vaccine. 2019 May 3. pii: S0264-410X(19)30417-7.
The modular binding sites on the influenza A(H3N2) hemagglutinin protein are under significant pressure to acquire mutations in order to evade human antibody recognition. Analysis of these hemagglutinin epitopes in the strains circulating during 2017/18 and early 2018/19 identified the emergence of a new antigenic cluster that has grown from 4% of circulating strains to 11%. We regressed our module-based antigenic distance, pepitope, with A(H3N2) vaccine effectiveness from recent studies conducted by the US Centers for Disease Control and Prevention (r2?=?0.92), and we used this to estimate that the 2018/19 vaccines will protect against most circulating A(H3N2) strains. The pEpitope model is useful for A(H3N2) influenza vaccine virus selection and development, and it has the potential to aid national or regional regulatory authorities in making geographically localized decisions.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]