Bonomo ME, Kim RY, Deem MW. Modular epitope binding predicts influenza quasispecies dominance and vaccine effectiveness: Application to 2018/19 season. Vaccine. 2019 May 3. pii: S0264-410X(19)30417-7.
The modular binding sites on the influenza A(H3N2) hemagglutinin protein are under significant pressure to acquire mutations in order to evade human antibody recognition. Analysis of these hemagglutinin epitopes in the strains circulating during 2017/18 and early 2018/19 identified the emergence of a new antigenic cluster that has grown from 4% of circulating strains to 11%. We regressed our module-based antigenic distance, pepitope, with A(H3N2) vaccine effectiveness from recent studies conducted by the US Centers for Disease Control and Prevention (r2?=?0.92), and we used this to estimate that the 2018/19 vaccines will protect against most circulating A(H3N2) strains. The pEpitope model is useful for A(H3N2) influenza vaccine virus selection and development, and it has the potential to aid national or regional regulatory authorities in making geographically localized decisions.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 15 hours ago
- Avian influenza overview September - November 2025 16 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 16 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 18 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 18 hours ago
[Go Top] [Close Window]


