Akole A, Warner JM. Model of influenza virus acidification. PLoS ONE 14(4): e0214448.
Internal acidification of the influenza virus, mediated by the M2 proton channel, is a key step in its life cycle. The interior M1 protein shell dissolves at pH~5.5 to 6.0, allowing the release of vRNA to the cytoplasm upon fusion of the viral envelope with the endosomal membrane. Previous models have described the mechanisms and rate constants of M2-mediated transport but did not describe the kinetics of pH changes inside the virus or consider exterior pH changes due to endosome maturation. Therefore, we developed a mathematical model of M2-mediated virion acidification. We find that ~32,000 protons are required to acidify a typically-sized virion. Predicted acidification kinetics were consistent with published in vitro experiments following internal acidification. Finally, we applied the model to the in vivo situation. For all rates of endosomal maturation considered, internal acidification lagged ~1 min behind endosomal acidification to pH 6. For slow endosomal maturation requiring several minutes or more, internal and endosomal pH decay together in pseudo-equilibrium to the late endosomal pH~5.0. For fast endosomal maturation (?2 min), a lag of tens of seconds continued toward the late endosomal pH. Recent experiments suggest in vivo maturation is in this "fast" regime where lag is considerable. We predict that internal pH reaches the threshold for M1 shell solvation just before the external pH triggers membrane fusion mediated by the influenza protein hemagglutinin, critical because outward proton diffusion through a single small fusion pore is faster than the collective M2-mediated transport inward.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 14 hours ago
- Avian influenza overview September - November 2025 14 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 14 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 16 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 16 hours ago
[Go Top] [Close Window]


