Soilemetzidou ES, et al. Diet May Drive Influenza A Virus Exposure in African Mammals. J Infect Dis. 2019 Mar 6
BACKGROUND:
Influenza A viruses (IAVs) represent repeatedly emerging pathogens with near worldwide distribution and an unclear nonavian-host spectrum. While the natural hosts for IAV are among waterfowl species, certain mammals can be productively infected. Southern Africa is home to diverse avian and mammalian fauna for which almost no information exists on IAV dynamics.
METHODS:
We evaluated 111 serum samples from 14 mammalian species from Namibia for the presence of IAV-specific antibodies and tested whether host phylogeny, sociality, or diet influence viral prevalence and diversity.
RESULTS:
Free-ranging African mammals are exposed to diverse IAV subtypes. Herbivores developed antibodies against 3 different hemagglutinin (HA) subtypes, at low prevalence, while carnivores showed a higher prevalence and diversity of HA-specific antibody responses against 11 different subtypes. Host phylogeny and sociality were not significantly associated with HA antibody prevalence or subtype diversity. Both seroprevalence and HA diversity were significantly increased in carnivores regularly feeding on birds.
CONCLUSIONS:
The risk of infection and transmission may be driven by diet and ecological factors that increase contact with migratory and resident waterfowl. Consequently, wild mammals, particularly those that specialize on hunting and scavenging birds, could play an important but overlooked role in influenza epizootics.
Influenza A viruses (IAVs) represent repeatedly emerging pathogens with near worldwide distribution and an unclear nonavian-host spectrum. While the natural hosts for IAV are among waterfowl species, certain mammals can be productively infected. Southern Africa is home to diverse avian and mammalian fauna for which almost no information exists on IAV dynamics.
METHODS:
We evaluated 111 serum samples from 14 mammalian species from Namibia for the presence of IAV-specific antibodies and tested whether host phylogeny, sociality, or diet influence viral prevalence and diversity.
RESULTS:
Free-ranging African mammals are exposed to diverse IAV subtypes. Herbivores developed antibodies against 3 different hemagglutinin (HA) subtypes, at low prevalence, while carnivores showed a higher prevalence and diversity of HA-specific antibody responses against 11 different subtypes. Host phylogeny and sociality were not significantly associated with HA antibody prevalence or subtype diversity. Both seroprevalence and HA diversity were significantly increased in carnivores regularly feeding on birds.
CONCLUSIONS:
The risk of infection and transmission may be driven by diet and ecological factors that increase contact with migratory and resident waterfowl. Consequently, wild mammals, particularly those that specialize on hunting and scavenging birds, could play an important but overlooked role in influenza epizootics.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]