Pei S, Cane MA, Shaman J. Predictability in process-based ensemble forecast of influenza. PLoS Comput Biol. 2019 Feb 28;15(2):e1006783
Process-based models have been used to simulate and forecast a number of nonlinear dynamical systems, including influenza and other infectious diseases. In this work, we evaluate the effects of model initial condition error and stochastic fluctuation on forecast accuracy in a compartmental model of influenza transmission. These two types of errors are found to have qualitatively similar growth patterns during model integration, indicating that dynamic error growth, regardless of source, is a dominant component of forecast inaccuracy. We therefore examine the nonlinear growth of model initial error and compute the fastest growing directions using singular vector analysis. Using this information, we generate perturbations in an ensemble forecast system of influenza to obtain more optimal ensemble spread. In retrospective forecasts of historical outbreaks for 95 US cities from 2003 to 2014, this approach improves short-term forecast of incidence over the next one to four weeks.
See Also:
Latest articles in those days:
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 17 hours ago
- AI-Powered Identification of Human Cell Surface Protein Interactors of the Hemagglutinin Glycoprotein of High-Pandemic-Risk H5N1 Influenza Virus 17 hours ago
- Seasonal Influenza Vaccination Uptake and Intentions Among Nursing Students in Hong Kong 17 hours ago
- Intranasal Mosaic H1N1 Live Attenuated Influenza Vaccine Elicits Broad Cross-Reactive Immunity and Protection Against Group 1 and 2 Influenza A Viruses 17 hours ago
- Changing Landscape of Pediatric Influenza in Northern Mexico: A Comparative Clinical and Virological Study 17 hours ago
[Go Top] [Close Window]


