Kandula S, Shaman J. Near-term forecasts of influenza-like illness: An evaluation of autoregressive time series approaches. Epidemics. 2019 Jan 17
Seasonal influenza in the United States is estimated to cause 9-35 million illnesses annually, with resultant economic burden amounting to $47-$150 billion. Reliable real-time forecasts of influenza can help public health agencies better manage these outbreaks. Here, we investigate the feasibility of three autoregressive methods for near-term forecasts: an Autoregressive Integrated Moving Average (ARIMA) model with time-varying order; an ARIMA model fit to seasonally adjusted incidence rates (ARIMA-STL); and a feed-forward autoregressive artificial neural network with a single hidden layer (AR-NN). We generated retrospective forecasts for influenza incidence one to four weeks in the future at US National and 10 regions in the US during 5 influenza seasons. We compared the relative accuracy of the point and probabilistic forecasts of the three models with respect to each other and in relation to two large external validation sets that each comprise at least 20 other models. Both the probabilistic and point forecasts of AR-NN were found to be more accurate than those of the other two models overall. An additional sub-analysis found that the three models benefitted considerably from the use of search trends based ´nowcast´ as a proxy for surveillance data, and these three models with use of nowcasts were found to be the highest ranked models in both validation datasets. When the nowcasts were withheld, the three models remained competitive relative to models in the validation sets. The difference in accuracy among the three models, and relative to models of the validation sets, was found to be largely statistically significant. Our results suggest that autoregressive models even when not equipped to capture transmission dynamics can provide reasonably accurate near-term forecasts for influenza. Existing support in open-source libraries make them suitable non-na?ve baselines for model comparison studies and for operational forecasts in resource constrained settings where more sophisticated methods may not be feasible.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]