Ren L, et al. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome. Virology. 2019 Feb 11;530:51-58
Virus reprogramming of host cellular function is a critical strategy for viral survival and replication. A better understanding of virus-host interaction may provide new potential avenues for the treatment of viral diseases. It has been reported that hypoxia-inducible factor-1 (HIF-1) pathway is activated by a range of pathogens via different mechanisms, but the impact of Influenza A virus on HIF-1 signaling is still unclear. In this study, we observed H1N1 infection stabilized HIF-1α under normoxic conditions. In detail, H1N1 did not increase HIF-1α mRNA transcription, nor impaired posttranslational prolyl hydroxylation or ubiquitination of HIF-1α, but inhibited the function of proteasome, resulting in HIF-1α accumulation. Furthermore, a decreased expression of factor inhibiting HIF-1 (FIH-1), which hydroxylates asparagine 803 within HIF-1α to repress HIF-1α activity, was seen after H1N1 infection. Taken together, these findings reveal a previously unrecognized mechanism of viral activation of the HIF-1 pathway, resembling a hypoxic response in normoxia.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]