Lu FS, Hattab MW, Clemente CL, et al. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nat Commun. 2019 Jan 11;10(1):147
In the presence of health threats, precision public health approaches aim to provide targeted, timely, and population-specific interventions. Accurate surveillance methodologies that can estimate infectious disease activity ahead of official healthcare-based reports, at relevant spatial resolutions, are important for achieving this goal. Here we introduce a methodological framework which dynamically combines two distinct influenza tracking techniques, using an ensemble machine learning approach, to achieve improved state-level influenza activity estimates in the United States. The two predictive techniques behind the ensemble utilize (1) a self-correcting statistical method combining influenza-related Google search frequencies, information from electronic health records, and historical flu trends within each state, and (2) a network-based approach leveraging spatio-temporal synchronicities observed in historical influenza activity across states. The ensemble considerably outperforms each component method in addition to previously proposed state-specific methods for influenza tracking, with higher correlations and lower prediction errors.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 2 hours ago
- Avian influenza overview September - November 2025 3 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 3 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 5 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 5 hours ago
[Go Top] [Close Window]


