Chen H, Alvarez JJS, Ng SH, Nielsen R, Zhai W. Passage adaptation correlates with the reduced efficacy of the influenza vaccine. Clin Infect Dis. 2018 Dec 18.
Background:
As a dominant seasonal influenza virus, H3N2 virus rapidly evolves in human and is a constant threat to public health. Despite sustained research efforts, the efficacy of H3N2 vaccine has decreased rapidly. Even though antigenic drift and passage adaptation (substitutions accumulated during vaccine production in embryonated eggs) have been implicated in reduced vaccine efficacy, their respective contributions to the phenomenon remain controversial.
Methods:
We utilized mutational mapping, a powerful probabilistic method of studying sequence evolution, to analyze patterns of substitutions in different passage conditions for an unprecedented amount of H3N2 hemagglutinin sequences (n=32278).
Results:
We found that passage adaptation in embryonated eggs is driven by repeated convergent evolution over 12 codons. Based on substitution patterns at these sites, we developed a metric, Adaptive Distance (AD), to quantify the strength of passage adaptation and subsequently identified a strong negative correlation between AD and vaccine efficacy.
Conclusions:
The high correlation between AD and vaccine efficacy implies that passage adaptation in embryonated eggs may be a strong contributor to the recent reduction in H3N2 vaccine efficacy. We developed a computational package called MADE to measure the strength of passage adaptation and predict the efficacy of a candidate vaccine strain. Our findings hence shed light on strategies that reducing Darwinian evolution within the passaging medium can potentially restore an effective vaccine program in the coming future.
As a dominant seasonal influenza virus, H3N2 virus rapidly evolves in human and is a constant threat to public health. Despite sustained research efforts, the efficacy of H3N2 vaccine has decreased rapidly. Even though antigenic drift and passage adaptation (substitutions accumulated during vaccine production in embryonated eggs) have been implicated in reduced vaccine efficacy, their respective contributions to the phenomenon remain controversial.
Methods:
We utilized mutational mapping, a powerful probabilistic method of studying sequence evolution, to analyze patterns of substitutions in different passage conditions for an unprecedented amount of H3N2 hemagglutinin sequences (n=32278).
Results:
We found that passage adaptation in embryonated eggs is driven by repeated convergent evolution over 12 codons. Based on substitution patterns at these sites, we developed a metric, Adaptive Distance (AD), to quantify the strength of passage adaptation and subsequently identified a strong negative correlation between AD and vaccine efficacy.
Conclusions:
The high correlation between AD and vaccine efficacy implies that passage adaptation in embryonated eggs may be a strong contributor to the recent reduction in H3N2 vaccine efficacy. We developed a computational package called MADE to measure the strength of passage adaptation and predict the efficacy of a candidate vaccine strain. Our findings hence shed light on strategies that reducing Darwinian evolution within the passaging medium can potentially restore an effective vaccine program in the coming future.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 12 hours ago
- Avian influenza overview September - November 2025 12 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 12 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


