York IA, Stevens J, Alymova IV. Influenza Virus N-linked Glycosylation and Innate Immunity. Biosci Rep. 2018 Dec 14
Influenza viruses cause seasonal epidemics and sporadic pandemics in humans. The virus´s ability to change its antigenic nature through mutation and recombination, and the difficulty in developing highly effective universal vaccines against it, make it a serious global public health challenge. Influenza virus´s surface glycoproteins, hemagglutinin and neuraminidase, are all modified by the host cell´s N-linked glycosylation pathways. Host innate immune responses are the first line of defense against infection, and glycosylation of these major antigens plays an important role in the generation of host innate responses toward the virus. Here, we review the principal findings in the analytical techniques used to study influenza N-linked glycosylation, the evolutionary dynamics of N-linked glycosylation in seasonal vs. pandemic and zoonotic strains, its role in host innate immune responses, and the prospects for lectin-based therapies. As the efficiency of innate immune responses is a critical determinant of disease severity and adaptive immunity, the study of influenza glycobiology is of clinical as well as research interest.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 12 hours ago
- Avian influenza overview September - November 2025 12 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 12 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


