Miyagawa T, et al. A Novel Diagnostic System for Infectious Diseases Using Solid-State Nanopore Devices. Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:283
Nanopore-based diagnostic systems are a promising tool for counting viruses in a specimen one by one. However, despite intensive R&D efforts, it remains difficult to recognize virus subtypes by nanopore devices. We thus propose a novel diagnostic system that combines a specialized virus recognition procedure with a nanopore detection procedure. This recognition procedure consists of three steps: 1) capture target viruses using specific probes for recognition; 2) release captured targets; and 3) detect released targets by nanopore. Proof-of-concept tests are conducted using avidin-modified fluorescent particles (as a model for viruses) and biotin-modified alkane thiol (as a model for probes). The avidin-modified particles are confirmed to be captured on electrode by biotin-modified probes and then, the particles are electrochemically released from the electrode. Consequently, the released particles are successfully detected by nanopore devices. Furthermore, the concept is also proved by using human influenza viruses (H1N1, A/PR/8/34) and sugar chain (6´-sialyllactose)-modified probes. This suggests that our concept is applicable to various infectious diseases by changing probes (ligands).
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 12 hours ago
- Avian influenza overview September - November 2025 12 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 12 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


