Il Kim J, et al. Distinct molecular evolution of influenza H3N2 strains in the 2016/17 season and its implications for vaccine effectiveness. Mol Phylogenet Evol. 2018 Nov 3.
Influenza virus is a respiratory pathogen that causes seasonal epidemics by resulting in a considerable number of influenza-like illness (ILI) patients. During the 2016/17 season, ILI rates increased unusually earlier and higher than previous seasons in Korea, and most viral isolates were subtyped as H3N2 strains. Notably, the hemagglutinin (HA) of most Korean H3N2 strains retained newly introduced lysine signatures in HA antigenic sites A and D, compared with that of clade 3C.2a vaccine virus, which might affect antigenic distances to the standard vaccine antisera in a hemagglutination inhibition assay. The neuraminidase (NA) of Korean H3N2 strains also harbored amino acid mutations. However, neither consistent amino acid mutations nor common phylogenetic clustering patterns were observed. These suggest that Korean H3N2 strains of the 2016/17 season might be distantly related with the vaccine virus both in genotypic and phenotypic classifications, which would adversely affect vaccine effectiveness.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 12 hours ago
- Avian influenza overview September - November 2025 12 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 12 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


