Bartsch SM, et al. Epidemiologic and economic impact of pharmacies as vaccination locations during an influenza epidemic. Vaccine. 2018 Oct 5.
INTRODUCTION:
During an influenza epidemic, where early vaccination is crucial, pharmacies may be a resource to increase vaccine distribution reach and capacity.
METHODS:
We utilized an agent-based model of the US and a clinical and economics outcomes model to simulate the impact of different influenza epidemics and the impact of utilizing pharmacies in addition to traditional (hospitals, clinic/physician offices, and urgent care centers) locations for vaccination for the year 2017.
RESULTS:
For an epidemic with a reproductive rate (R0) of 1.30, adding pharmacies with typical business hours averted 11.9 million symptomatic influenza cases, 23,577 to 94,307 deaths, $1.0 billion in direct (vaccine administration and healthcare) costs, $4.2-44.4 billion in productivity losses, and $5.2-45.3 billion in overall costs (varying with mortality rate). Increasing the epidemic severity (R0 of 1.63), averted 16.0 million symptomatic influenza cases, 35,407 to 141,625 deaths, $1.9 billion in direct costs, $6.0-65.5 billion in productivity losses, and $7.8-67.3 billion in overall costs (varying with mortality rate). Extending pharmacy hours averted up to 16.5 million symptomatic influenza cases, 145,278 deaths, $1.9 billion direct costs, $4.1 billion in productivity loss, and $69.5 billion in overall costs. Adding pharmacies resulted in a cost-benefit of $4.1 to $11.5 billion, varying epidemic severity, mortality rate, pharmacy hours, location vaccination rate, and delay in the availability of the vaccine.
CONCLUSIONS:
Administering vaccines through pharmacies in addition to traditional locations in the event of an epidemic can increase vaccination coverage, mitigating up to 23.7 million symptomatic influenza cases, providing cost-savings up to $2.8 billion to third-party payers and $99.8 billion to society. Pharmacies should be considered as points of dispensing epidemic vaccines in addition to traditional settings as soon as vaccines become available.
During an influenza epidemic, where early vaccination is crucial, pharmacies may be a resource to increase vaccine distribution reach and capacity.
METHODS:
We utilized an agent-based model of the US and a clinical and economics outcomes model to simulate the impact of different influenza epidemics and the impact of utilizing pharmacies in addition to traditional (hospitals, clinic/physician offices, and urgent care centers) locations for vaccination for the year 2017.
RESULTS:
For an epidemic with a reproductive rate (R0) of 1.30, adding pharmacies with typical business hours averted 11.9 million symptomatic influenza cases, 23,577 to 94,307 deaths, $1.0 billion in direct (vaccine administration and healthcare) costs, $4.2-44.4 billion in productivity losses, and $5.2-45.3 billion in overall costs (varying with mortality rate). Increasing the epidemic severity (R0 of 1.63), averted 16.0 million symptomatic influenza cases, 35,407 to 141,625 deaths, $1.9 billion in direct costs, $6.0-65.5 billion in productivity losses, and $7.8-67.3 billion in overall costs (varying with mortality rate). Extending pharmacy hours averted up to 16.5 million symptomatic influenza cases, 145,278 deaths, $1.9 billion direct costs, $4.1 billion in productivity loss, and $69.5 billion in overall costs. Adding pharmacies resulted in a cost-benefit of $4.1 to $11.5 billion, varying epidemic severity, mortality rate, pharmacy hours, location vaccination rate, and delay in the availability of the vaccine.
CONCLUSIONS:
Administering vaccines through pharmacies in addition to traditional locations in the event of an epidemic can increase vaccination coverage, mitigating up to 23.7 million symptomatic influenza cases, providing cost-savings up to $2.8 billion to third-party payers and $99.8 billion to society. Pharmacies should be considered as points of dispensing epidemic vaccines in addition to traditional settings as soon as vaccines become available.
See Also:
Latest articles in those days:
- The Limited Role for Antiviral Therapy in Influenza 3 hours ago
- Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in Macaques 4 hours ago
- [preprint]Susceptibility of bovine respiratory and mammary epithelial cells to avian and mammalian derived clade 2.3.4.4b H5N1 highly pathogenic avian influenza viruses 1 days ago
- Genetic Diversity of H10N3 Avian Influenza Virus Isolated from Anhui Province, China 1 days ago
- Molecular origion of human infection with a novel avian influenza A H10N3 virus in China, 2021 1 days ago
[Go Top] [Close Window]