Bartsch SM, et al. Epidemiologic and economic impact of pharmacies as vaccination locations during an influenza epidemic. Vaccine. 2018 Oct 5.
INTRODUCTION:
During an influenza epidemic, where early vaccination is crucial, pharmacies may be a resource to increase vaccine distribution reach and capacity.
METHODS:
We utilized an agent-based model of the US and a clinical and economics outcomes model to simulate the impact of different influenza epidemics and the impact of utilizing pharmacies in addition to traditional (hospitals, clinic/physician offices, and urgent care centers) locations for vaccination for the year 2017.
RESULTS:
For an epidemic with a reproductive rate (R0) of 1.30, adding pharmacies with typical business hours averted 11.9 million symptomatic influenza cases, 23,577 to 94,307 deaths, $1.0 billion in direct (vaccine administration and healthcare) costs, $4.2-44.4 billion in productivity losses, and $5.2-45.3 billion in overall costs (varying with mortality rate). Increasing the epidemic severity (R0 of 1.63), averted 16.0 million symptomatic influenza cases, 35,407 to 141,625 deaths, $1.9 billion in direct costs, $6.0-65.5 billion in productivity losses, and $7.8-67.3 billion in overall costs (varying with mortality rate). Extending pharmacy hours averted up to 16.5 million symptomatic influenza cases, 145,278 deaths, $1.9 billion direct costs, $4.1 billion in productivity loss, and $69.5 billion in overall costs. Adding pharmacies resulted in a cost-benefit of $4.1 to $11.5 billion, varying epidemic severity, mortality rate, pharmacy hours, location vaccination rate, and delay in the availability of the vaccine.
CONCLUSIONS:
Administering vaccines through pharmacies in addition to traditional locations in the event of an epidemic can increase vaccination coverage, mitigating up to 23.7 million symptomatic influenza cases, providing cost-savings up to $2.8 billion to third-party payers and $99.8 billion to society. Pharmacies should be considered as points of dispensing epidemic vaccines in addition to traditional settings as soon as vaccines become available.
During an influenza epidemic, where early vaccination is crucial, pharmacies may be a resource to increase vaccine distribution reach and capacity.
METHODS:
We utilized an agent-based model of the US and a clinical and economics outcomes model to simulate the impact of different influenza epidemics and the impact of utilizing pharmacies in addition to traditional (hospitals, clinic/physician offices, and urgent care centers) locations for vaccination for the year 2017.
RESULTS:
For an epidemic with a reproductive rate (R0) of 1.30, adding pharmacies with typical business hours averted 11.9 million symptomatic influenza cases, 23,577 to 94,307 deaths, $1.0 billion in direct (vaccine administration and healthcare) costs, $4.2-44.4 billion in productivity losses, and $5.2-45.3 billion in overall costs (varying with mortality rate). Increasing the epidemic severity (R0 of 1.63), averted 16.0 million symptomatic influenza cases, 35,407 to 141,625 deaths, $1.9 billion in direct costs, $6.0-65.5 billion in productivity losses, and $7.8-67.3 billion in overall costs (varying with mortality rate). Extending pharmacy hours averted up to 16.5 million symptomatic influenza cases, 145,278 deaths, $1.9 billion direct costs, $4.1 billion in productivity loss, and $69.5 billion in overall costs. Adding pharmacies resulted in a cost-benefit of $4.1 to $11.5 billion, varying epidemic severity, mortality rate, pharmacy hours, location vaccination rate, and delay in the availability of the vaccine.
CONCLUSIONS:
Administering vaccines through pharmacies in addition to traditional locations in the event of an epidemic can increase vaccination coverage, mitigating up to 23.7 million symptomatic influenza cases, providing cost-savings up to $2.8 billion to third-party payers and $99.8 billion to society. Pharmacies should be considered as points of dispensing epidemic vaccines in addition to traditional settings as soon as vaccines become available.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 3 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 3 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 3 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]