Lee N, Hurt AC. Neuraminidase inhibitor resistance in influenza: a clinical perspective. Curr Opin Infect Dis. 2018 Oct 6.
PURPOSE OF REVIEW:
Neuraminidase inhibitors (NAIs), including oseltamivir, zanamivir, and peramivir, is the main class of antiviral available for clinical use. As such, development of resistance toward these agents is of great clinical and public health concern.
RECENT FINDINGS:
At present, NAI resistance remains uncommon among the circulating viruses (oseltamivir <3.5%, zanamivir <1%). Resistance risk is slightly higher in A(H1N1) than A(H3N2) and B viruses. Resistance may emerge during drug exposure, particularly among young children (<5 years), the immunocompromised, and individuals receiving prophylactic regimens. H275Y A(H1N1) variant, showing high-level oseltamivir resistance, is capable of causing outbreaks. R294K A(H7N9) variant shows reduced inhibition across NAIs. Multi-NAI resistance has been reported in the immunocompromised.
SUMMARY:
These findings highlight the importance of continuous surveillance, and assessment of viral fitness and transmissibility of resistant virus strains. Detection can be challenging, especially in a mix of resistant and wild-type viruses. Recent advances in molecular techniques (e.g. targeted mutation PCR, iART, ddPCR, pyrosequencing, next-generation sequencing) have improved detection and our understanding of viral dynamics. Treatment options available for oseltamivir-resistant viruses are limited, and susceptibility testing of other NAIs may be required, but non-NAI antivirals (e.g. polymerase inhibitors) that are active against these resistant viruses are in late-stage clinical development.
Neuraminidase inhibitors (NAIs), including oseltamivir, zanamivir, and peramivir, is the main class of antiviral available for clinical use. As such, development of resistance toward these agents is of great clinical and public health concern.
RECENT FINDINGS:
At present, NAI resistance remains uncommon among the circulating viruses (oseltamivir <3.5%, zanamivir <1%). Resistance risk is slightly higher in A(H1N1) than A(H3N2) and B viruses. Resistance may emerge during drug exposure, particularly among young children (<5 years), the immunocompromised, and individuals receiving prophylactic regimens. H275Y A(H1N1) variant, showing high-level oseltamivir resistance, is capable of causing outbreaks. R294K A(H7N9) variant shows reduced inhibition across NAIs. Multi-NAI resistance has been reported in the immunocompromised.
SUMMARY:
These findings highlight the importance of continuous surveillance, and assessment of viral fitness and transmissibility of resistant virus strains. Detection can be challenging, especially in a mix of resistant and wild-type viruses. Recent advances in molecular techniques (e.g. targeted mutation PCR, iART, ddPCR, pyrosequencing, next-generation sequencing) have improved detection and our understanding of viral dynamics. Treatment options available for oseltamivir-resistant viruses are limited, and susceptibility testing of other NAIs may be required, but non-NAI antivirals (e.g. polymerase inhibitors) that are active against these resistant viruses are in late-stage clinical development.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 2 hours ago
- Avian influenza overview September - November 2025 2 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 2 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 4 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 4 hours ago
[Go Top] [Close Window]


