Peng C, etc.,al. Protective efficacy of an inactivated chimeric H7/H5 avian influenza vaccine against highly pathogenic avian influenza H7N9 and clade 2.3.4.4 H5 viruses. Vet Microbiol. 2018 Sep;223:21-26
The highly pathogenic avian influenza (HPAI) H5 and H7N9 viruses pose a serious challenge to public health and the poultry industry in China. In this study, we generated a chimeric H7/H5 recombinant virus that expressed the entire HA1 region of the HPAI A/chicken/Guangdong/RZ/2017(H7N9) virus and the HA2 region of the HPAI A/chicken/Fujian/5/2016(H5N6) viruses. The resulting chimeric PR8-H7/H5 virus exhibited similar growth kinetics as the parental PR8-H5 and PR8-H7 viruses in vitro. The inactivated chimeric PR8-H7/H5 vaccine induced specific, cross-reactive hemagglutination inhibition antibodies against the H7 virus only but induced serum-neutralizing antibodies against both H7 and H5 viruses. Furthermore, the inactivated chimeric PR8-H7/H5 vaccine significantly reduced virus shedding and protected chickens from challenge with the HPAI H5N6 and H7N9 viruses. Our results suggested that the inactivated chimeric PR8-H7/H5 vaccine was effective against HPAI H5 and H7N9 viruses in chickens.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 2 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 2 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 2 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 3 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 3 days ago
[Go Top] [Close Window]