Neumann G, Fan S, Kawaoka Y. Selection of Antigenically Advanced Variants of Influenza Viruses. Methods Mol Biol. 2018;1836:461-486
Influenza virus epidemics are caused when seasonal influenza viruses (i.e., those circulating in humans) acquire mutations in the antigenic sites of the viral hemagglutinin (HA) protein that prevent the antibodies present in people from binding to the virus and blocking virus interaction with cellular receptors. To date, vaccination is the best protective option against seasonal influenza viruses. Because influenza viruses frequently acquire mutations in their antigenic sites, vaccine viruses need to be updated regularly. Here, we present an experimental system that allows the simulation of influenza virus evolution in the test tube. By using this system, we can identify antigenic variants that may emerge among natural influenza viruses in the near future. This information would help in the selection and prioritization of variants for vaccine production.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 1 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 1 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 1 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 2 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 2 days ago
[Go Top] [Close Window]