Lau SY, etc.,al. tification of meteorological factors associated with human infection with avian influenza A H7N9 virus in Zhejiang Province, China. Sci Total Environ. 2018 Jul 6;644:696-709
BACKGROUND:
Since the first reported human infection with an avian-origin influenza A (H7N9) virus in China in early 2013, there have been recurrent outbreaks of the virus in the country. Previous studies have shown that meteorological factors are associated with the risk of human infection with the virus; however, their possible nonlinear and lagged effects were not commonly taken into account.
METHOD:
To quantify the effect of meteorological factors on the risk of human H7N9 infection, daily laboratory-confirmed cases of human H7N9 infection and meteorological factors including total rainfall, average wind speed, average temperature, average relative humidity, and sunshine duration of the 11 sub-provincial/prefecture cities in Zhejiang during the first four outbreaks (13 March 2013-30 June 2016) were analyzed. Separate models were built for the 6 sub-provincial/prefecture cities with the greatest number of reported cases using a combination of logistic generalized additive model and distributed lag nonlinear models, which were then pooled by a multivariate meta-regression model to determine their overall effects.
RESULTS:
According to the meta-regression model, for rainfall, the log adjusted overall cumulative odds ratio was statistically significant when log of rainfall was >4.0, peaked at 5.3 with a value of 12.42 (95% confidence intervals (CI): [3.23, 21.62]). On the other hand, when wind speed was 2.1-3.0?m/s or 6.3-7.1?m/s, the log adjusted overall cumulative odds ratio was statistically significant, peaked at 7.1?m/s with a value of 6.75 (95% CI: [0.03, 13.47]). There were signs of nonlinearity and lag effects in their associations with the risk of infection.
CONCLUSION:
As rainfall and wind speed were found to be associated with the risk of human H7N9 infection, weather conditions should be taken into account when it comes to disease surveillance, allowing prompt actions when an outbreak takes place.
Since the first reported human infection with an avian-origin influenza A (H7N9) virus in China in early 2013, there have been recurrent outbreaks of the virus in the country. Previous studies have shown that meteorological factors are associated with the risk of human infection with the virus; however, their possible nonlinear and lagged effects were not commonly taken into account.
METHOD:
To quantify the effect of meteorological factors on the risk of human H7N9 infection, daily laboratory-confirmed cases of human H7N9 infection and meteorological factors including total rainfall, average wind speed, average temperature, average relative humidity, and sunshine duration of the 11 sub-provincial/prefecture cities in Zhejiang during the first four outbreaks (13 March 2013-30 June 2016) were analyzed. Separate models were built for the 6 sub-provincial/prefecture cities with the greatest number of reported cases using a combination of logistic generalized additive model and distributed lag nonlinear models, which were then pooled by a multivariate meta-regression model to determine their overall effects.
RESULTS:
According to the meta-regression model, for rainfall, the log adjusted overall cumulative odds ratio was statistically significant when log of rainfall was >4.0, peaked at 5.3 with a value of 12.42 (95% confidence intervals (CI): [3.23, 21.62]). On the other hand, when wind speed was 2.1-3.0?m/s or 6.3-7.1?m/s, the log adjusted overall cumulative odds ratio was statistically significant, peaked at 7.1?m/s with a value of 6.75 (95% CI: [0.03, 13.47]). There were signs of nonlinearity and lag effects in their associations with the risk of infection.
CONCLUSION:
As rainfall and wind speed were found to be associated with the risk of human H7N9 infection, weather conditions should be taken into account when it comes to disease surveillance, allowing prompt actions when an outbreak takes place.
See Also:
Latest articles in those days:
- [preprint]Susceptibility of bovine respiratory and mammary epithelial cells to avian and mammalian derived clade 2.3.4.4b H5N1 highly pathogenic avian influenza viruses 21 hours ago
- Genetic Diversity of H10N3 Avian Influenza Virus Isolated from Anhui Province, China 22 hours ago
- Molecular origion of human infection with a novel avian influenza A H10N3 virus in China, 2021 22 hours ago
- Clade 2.3.4.4b but not historical clade 1 HA replicating RNA vaccine protects against bovine H5N1 challenge in mice 22 hours ago
- GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding 22 hours ago
[Go Top] [Close Window]