Qiang X, Kou Z, Fang G, Wang Y. Scoring Amino Acid Mutations to Predict Avian-to-Human Transmission of Avian Influenza Viruses. Molecules. 2018 Jun 29;23(7)
Avian influenza virus (AIV) can directly cross species barriers and infect humans with high fatality. Using machine learning methods, the present paper scores the amino acid mutations and predicts interspecies transmission. Initially, 183 signature positions in 11 viral proteins were screened by the scores of five amino acid factors and their random forest rankings. The most important amino acid factor (Factor 3) and the minimal range of signature positions (50 amino acid residues) were explored by a supporting vector machine (the highest-performing classifier among four tested classifiers). Based on these results, the avian-to-human transmission of AIVs was analyzed and a prediction model was constructed for virology applications. The distributions of human-origin AIVs suggested that three molecular patterns of interspecies transmission emerge in nature. The novel findings of this paper provide important clues for future epidemic surveillance.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 9 hours ago
- Avian influenza overview September - November 2025 9 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 9 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 11 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 11 hours ago
[Go Top] [Close Window]


