Prabhu SS, Chakraborty TT, Kumar N, Banerjee I. Association between IFITM3 rs12252 polymorphism and influenza susceptibility and severity: A meta-analysis. Gene. 2018 Jun 22
Intrinsic host susceptibility to viral infections plays a major role in determining infection severity in different individuals. In human influenza virus infections, multiple genetic association studies have identified specific human gene variants that might contribute to enhanced susceptibility or resistance to influenza. Recent studies suggested, the rs12252 T?>?C polymorphism in the interferon-inducible transmembrane protein 3 (IFITM3) gene might be associated with susceptibility to severe influenza. However, the studies reported conflicting and inconclusive results. To resolve the controversy, we conducted a systematic meta-analysis to evaluate the role of the IFITM3 rs12252 polymorphism in influenza susceptibility and severity, including twelve studies published before February 19, 2018 with a total 16,263 subjects (1836 influenza cases and 14,427 controls). Odds ratios (OR) and 95% confidence intervals were used to assess the strength of the association. Our results indicated increased risk of both severe and mild influenza in subjects carrying the IFITM3 rs12252 polymorphism in the allele contrast C vs. T: OR (severe)?=?1.69, 95% CI?=?1.23-2.33, P?=?0.001, and OR (mild)?=?1.46, 95% CI?=?1.13-1.87, P?=?0.004. Similar results were obtained in the homozygote comparison and dominant model. Stratified analyses by ethnicity revealed increased risk of severe influenza in both the White and East Asian populations, but significant association with mild influenza was found only in the White population. Overall, our meta-analysis suggests a significant association between the IFITM3 rs12252 polymorphism and the risk of influenza in both the White and East Asian populations.
See Also:
Latest articles in those days:
- Mapping of stakeholders in avian influenza surveillance in Canada 10 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 22 hours ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 22 hours ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
- [preprint]A Live Attenuated Vaccine Candidate against Emerging Highly Pathogenic Cattle-Origin 2.3.4.4b H5N1 Viruses 2 days ago
[Go Top] [Close Window]