Read + Share Maemura T, Fukuyama S, Sugita Y, Lope. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis 2018 Jan 24
Exosomes regulate cell-cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 7 hours ago
- Avian influenza overview September - November 2025 7 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 7 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 9 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 9 hours ago
[Go Top] [Close Window]


