ISHIKAWA H, Fukui T, Ino S, Sasaki H, et al. Influenza virus infection causes neutrophil dysfunction through reduced G-CSF production and an increased risk of secondary bacteria infection in the lung. Virology. 2016 Sep 12;499:23-29.
The immunological mechanisms of secondary bacterial infection followed by influenza virus infection were examined. When mice were intranasally infected with influenza virus A and then infected with P. aeruginosa at 4 days after viral infection, bacterial clearance in the lung significantly decreased compared to that of non-viral infected mice. Neutrophils from viral infected mice showed impaired digestion and/or killing of phagocytized bacteria due to reduced myeloperoxidase (MPO) activity. G-CSF production in the lungs of viral infected mice was lower than that of non-viral infected mice after secondary bacterial infection. When viral infected mice were injected with G-CSF before secondary bacterial infection, the MPO activity of viral infected mice restored to the same level as that of non-infected mice. Bacteria clearance in viral infected mice was also recovered by G-CSF administration. Thus,
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 1 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 1 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 1 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 2 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 2 days ago
[Go Top] [Close Window]