Reperant LA, et al.. Quantifying the risk of pandemic influenza virus evolution by mutation and re-assortment. Vaccine. 2015
Large outbreaks of zoonotic influenza A virus (IAV) infections may presage an influenza pandemic. However, the likelihood that an airborne-transmissible variant evolves upon zoonotic infection or co-infection with zoonotic and seasonal IAVs remains poorly understood, as does the relative importance of accumulating mutations versus re-assortment in this process. Using discrete-time probabilistic models, we determined quantitative probability ranges that transmissible variants with 1-5 mutations and transmissible re-assortants evolve after a given number of zoonotic IAV infections. The systematic exploration of a large population of model parameter values was designed to account for uncertainty and variability in influenza virus infection, epidemiological and evolutionary processes. The models suggested that immunocompromised individuals are at high risk of generating IAV variants with pandemic potential by accumulation of mutations. Yet, both immunocompetent and immunocompromised individuals could generate high viral loads of single and double mutants, which may facilitate their onward transmission and the subsequent accumulation of additional 1-2 mutations in newly-infected individuals. This may result in the evolution of a full transmissible genotype along short chains of contact transmission. Although co-infection with zoonotic and seasonal IAVs was shown to be a rare event, it consistently resulted in high viral loads of re-assortants, which may facilitate their onward transmission among humans. The prevention or limitation of zoonotic IAV infection in immunocompromised and contact individuals, including health care workers, as well as vaccination against seasonal IAVs-limiting the risk of co-infection-should be considered fundamental tools to thwart the evolution of a novel pandemic IAV by accumulation of mutations and re-assortment
See Also:
Latest articles in those days:
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 17 hours ago
- AI-Powered Identification of Human Cell Surface Protein Interactors of the Hemagglutinin Glycoprotein of High-Pandemic-Risk H5N1 Influenza Virus 17 hours ago
- Seasonal Influenza Vaccination Uptake and Intentions Among Nursing Students in Hong Kong 17 hours ago
- Intranasal Mosaic H1N1 Live Attenuated Influenza Vaccine Elicits Broad Cross-Reactive Immunity and Protection Against Group 1 and 2 Influenza A Viruses 17 hours ago
- Changing Landscape of Pediatric Influenza in Northern Mexico: A Comparative Clinical and Virological Study 17 hours ago
[Go Top] [Close Window]


