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Abstract 
 

Aim: To estimate the key transmission parameters associated with an outbreak of 

pandemic influenza in an institutional setting (New Zealand 1918). 

 

Methods: Historical morbidity and mortality data were obtained from the report of the 

medical officer for a large military camp. A susceptible-exposed-infectious-recovered 

epidemiological model was solved numerically to find a range of best-fit estimates for 

key epidemic parameters and an incidence curve. Mortality data were subsequently 

modelled by performing a convolution of incidence distribution with a best-fit 

incidence-mortality lag distribution.  

 

Results: Basic reproduction number (R0) values for three possible scenarios ranged 

between 1.3, and 3.1, and corresponding average latent period and infectious period 

estimates ranged between 0.7 and 1.3 days, and 0.2 and 0.3 days respectively. The 

mean and median best-estimate incidence-mortality lag periods were 6.9 and 6.6 days 

respectively. This delay is consistent with secondary bacterial pneumonia being a 

relatively important cause of death in this predominantly young male population.  

 

Conclusions: These R0 estimates are broadly consistent with others made for the 1918 

influenza pandemic and are not particularly large relative to some other infectious 

diseases. This finding suggests that if a novel influenza strain of similar virulence 

emerged then it could potentially be controlled through the prompt use of major 

public health measures. 

 

 

Background 
 

The 1918 influenza pandemic reached New Zealand with an initial wave between July 

and October [1]. This was relatively mild with only four deaths out of 3048 reported 

cases for the population of military camps [1]. The second wave in late October was 

much more severe and spread throughout the country causing over 8000 deaths [2]. 

One large military camp near Featherston (a town in the south of the North Island) 

also suffered from exposure to the second wave of the 1918 pandemic at 

approximately the same time as the rest of the country. Influenza cases were reported 

in the camp from 28 October to 22 November 1918, and reported mortality occurred 

between 7 November and 11 December 1918, with both incidence and mortality 

peaking in November 1918 [2]. A unique feature of this military camp outbreak was 

the systematic collection by medical staff of morbidity data as well as mortality data. 
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We undertook modelling of these data to understand better the transmission dynamics 

of the 1918 influenza pandemic in New Zealand. 

 

 

Methods 
 

Data: The population of the Featherston Military Camp was that of a large regional 

town, comprising approximately 8000 military personnel of whom 3220 were 

hospitalised [3]. The camp policy was to hospitalise all those with diagnosed 

influenza and so we have used these hospitalisation data as the basis for the incidence 

of pandemic influenza in this population. An official report indicated a total of 177 

deaths attributable to the outbreak [4]. However, this figure was actually the total 

number of men who died in the camp in 1918 from all causes as reported by the 

Principal Medical Officer at the camp [3]. Further examination of data on the cause of 

death and date-of-death suggests the total mortality attributable to this outbreak was 

163 [5]. This revision gives a fairly conservative figure for the mortality impact and it 

is the one that we have used in this analysis.  

 

Mathematical modelling approach: A susceptible-exposed-infectious-recovered 

(SEIR) model for infectious diseases can be applied to a hypothetical isolated 

population, to investigate local infection dynamics [6, 7]. The SEIR model allows a 

systematic method by which to quantify the dynamics, and derive epidemiological 

parameters for disease outbreaks. In this model, individuals in a hypothetical 

population are categorized at any moment in time according to infection status, as one 

of susceptible, exposed, infectious, or removed from the epidemic process (either 

recovered and immune or deceased). If an infected individual is introduced into the 

population, rates of change of the proportion of the population in each group (s, e, i, 

and r, respectively) can be described by four simultaneous differential equations: 

 

ds
si

dt
β= −       (1) 

 

de
si e

dt
β ν= −       (2) 

 

di
e i

dt
ν γ= −       (3) 

 

dr
i

dt
γ=       (4) 

 

where β, ν and γ are rate constants for transformation of individuals from susceptible 

to exposed, from exposed to infectious, and from infectious to recovered and immune 

states, respectively. Once the above equations have been solved, the parameters β and 

γ can be utilized to calculate the basic reproduction number (R0) for the particular 

virus strain causing the outbreak. (The basic reproduction number represents the 

number of secondary cases generated by a primary case in a completely susceptible 

population). R0 and the average latent period (TE), and average infectious period (ΤΙ), 

can be calculated using the following relationships: 
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R0 =
β

γ
      (5) 

TE =
1

ν
       (6) 

 

TI =
1

γ
       (7) 

 

 

Other factors that are likely to affect the observed incidence of disease in a pandemic 

include the following: (i) the initial proportion of population that is susceptible (Pis); 

(ii) the proportion of infected cases who develop symptoms (Pids); (iii) the infectivity 

of asymptomatic people relative to the infectivity of symptomatic people (Infas); and 

(iv) the proportion of symptomatic cases who present (Psp).  

 

In this study, the factors listed above were incorporated into an SEIR model to 

generate incidence and subsequent mortality models for the influenza pandemic that 

swept through this military camp. These specific models and the resulting estimates of 

R0 and TE and ΤΙ are described below.  

 

 

SEIR model of incidence: When the SEIR model was applied in this study, 

assumptions about additional factors that might influence the observed incidence were 

made. The parameters associated with these assumptions are summarised for 3 

possible scenarios (Table 1). Parameters in Scenarios 1, 2, and 3 were chosen so that 

models would yield estimates of R0 at the lower, mid-range and higher ends of a likely 

spectrum, respectively. 

 

Equations 1 and 2 were modified to take the above parameters into account, as 

follows: 

 

( (1 ) )ids ids as

ds
P P Inf si

dt
β= − + −     (8) 

 

( (1 ) )ids ids as

de
P P Inf si e

dt
β ν= + − −    (9) 

 

Equations 3, 4, 8 and 9 are a system of non-linear differential equations, amenable to 

solution by the Runge-Kutta fourth order fixed step numerical method [8]. The 

population size was taken to be N = 8000. The initial value for s was Pis - 1/N, and 

initial values of e, i, and r were set at 0, 1/N and 1-Pis respectively. The differential 

equation system solutions were used to calculate daily incidence, taking into account 

parameters in Table 1, using the following equation: 

 

  

( ( 1) ( ))sp idsIncidence P P N s t s t= − −   (10) 

 

in which s(t) and s(t-1) are the proportion of susceptible individuals at t and t-1 days 

respectively after the introduction of a single symptomatic individual into the 

population. 
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For each scenario in Table 1, modelled incidence was compared to observed 

incidence over 26 days, and goodness of fit of the models was evaluated using sum of 

squared error (SSE) between modelled and empirical data. Optimum possible β, ν and 

γ values to one decimal place, in the range 0.1 to 20, were determined by finding 

values corresponding to a minimum SSE, utilizing an algorithm written in Mathcad 

[9]. 

 

The asymptotic variance-covariance matrix of the least squares estimates of β, ν and γ, 

was computed using the method described by Chowell et al. [10]. Equations 5, 6, and 

7, together with elements of the variance-covariance matrix, and the Taylor series 

approximation for variance of quotients [11], were subsequently used to estimate best-

fit values of R0, TE and ΤΙ , with associated standard deviations and confidence 

intervals. 

 

Associated mortality model: As morbidity and mortality data are not linked at the 

individual level, case-fatality lag was modelled by using convolution. A least-squares 

gamma distribution was fitted to the observed incidence curve. A gamma distribution 

with the same scale parameter was then fitted to mortality data. Utilising these 

distributions and the convolution formula, a gamma distributed incidence-mortality 

lag distribution, with the same scale parameter, was obtained.  

 

Gamma distributions with the same scale parameter were then fitted to the best-fit 

deterministic models of daily incidence. These distributions, convolved with the 

incidence-mortality lag distribution, yielded daily mortality distributions for each of 

Scenarios 1 to 3. A common scale parameter was used in the above convolutions in 

order to obtain closed-form (gamma) probability density functions.  

 

 

Results 
 

Best-fit incidence curves from the SEIR model for the three scenarios are shown in 

Figure 1. The corresponding best-fit β, ν and γ, and corresponding R0, TE and ΤΙ 

values, are shown in Table 2. The R0 values ranged between 1.3, and 3.1, and 

corresponding average latent period and infectious period estimates ranged between 

0.7 and 1.3 days, and 0.2 and 0.3 days, respectively. 

 

The gamma distribution of incidence-mortality lag time obtained by convolution is 

shown in Figure 2. The mean, median, mode and variance of this distribution are 6.9, 

6.6, 6.0 and 6.3 days respectively. 

 

Observed mortality data, shown in Figure 3, indicate more variability around a best-fit 

gamma distribution than observed incidence data (see Figure 1). Mortality curves for 

each of Scenarios 1 to 3, obtained by convolution, all agree well with the best-fit 

gamma distribution of observed data.  

 

 

Discussion 

 

This analysis has demonstrated the potential for using historical disease epidemic data 

to derive plausible, and potentially useful, pandemic influenza parameter estimates. 
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This is the first time that these parameters have been reported for the 1918 pandemic 

outside of Europe, the USA and Brazil. 

 

Limitations of this analysis: This work is limited by the very nature of using data 

from an event that occurred over eight decades ago. For example, the estimate of the 

camp’s population was only approximate (at 8000). The mortality burden of this 

particular outbreak (at 20.4 per 1000) was also somewhat higher than that for the 

general male population of New Zealand (ie, at 10.0 per 1000 for 20-24 year olds) [2]. 

It was, however, similar to the pandemic influenza mortality burden of the armed 

forces as a whole (at 23.5 per 1000) and for other military camps at 22.0 and 23.5 (for 

Awapuni and Trentham camps respectively) [2]. It is plausible that higher death rates 

in military camps may have been related to both higher risk of infection (e.g. via 

crowding) and the poor living conditions involved (i.e. the extensive use of tents). 

Crowded troop trains may also have contributed to disease spread and in the weekend 

prior to the main outbreak in the camp many of the recruits had been away on leave, 

and were transported to and from the camp by troop trains. Furthermore, a severe 

storm struck the Featherston camp on 7 November (the day that influenza incidence 

peaked) and flattened many tents. This event placed additional stresses on 

accommodating men in huts that were already full and with some huts (and all 

institute buildings such as the YMCA, for example) being used as overflow wards to 

the main camp hospital to which the most severe cases were admitted. Less severe 

cases were admitted to makeshift wards in the so-called institute buildings, and the 

huts were used for convalescence. In his report, the Principal Medical Officer 

commented that this storm was likely to have exacerbated the impact of the outbreak 

and this is certainly plausible [3]. 

 

In addition to data limitations, the parameters used for the SEIR model also involve 

uncertainties; for example, we have no good data on the proportion of the young male 

population who were likely to be susceptible to this strain in 1918 (e.g. based on the 

possible residual immunity from the first wave of the pandemic or from previous 

influenza epidemics and pandemics). Also, the SEIR model involves a number of 

simplifying assumptions, including a single index case, homogeneous mixing, 

exponentially distributed residence times in infectious status categories, and isolation 

of the military camp. 

 

Estimating R0: The estimates for R0 in the range from 1.3 to 3.1 are the first such 

estimates for the 1918 pandemic outside Europe, the United States and Brazil, so far 

as we are aware. However, given the unique aspects of the military camp (crowded 

conditions and a young population with low immunity) it is quite likely that the R0  

values estimated in our analysis might tend to over-estimate those for the general 

population. Nevertheless, this effect may have been partly offset by the camp policy 

of immediate hospitalisation upon symptoms, effectively reducing infective contacts. 

 

Our estimated range for R0 is broadly consistent with estimates for this pandemic in 

the United States (a median R0 of 2.9 for 45 cities) [12]. Other comparable figures for 

the 1918 pandemic are: 1.7 to 2.0 for the first wave for British city-level mortality 

data [13]; 2.0, 1.6 and 1.7 for the first, second and third waves in the UK respectively 

[14]; 1.5 and 3.8 in the first and second waves in Geneva respectively [15]; and 2.7 

for Sao Paulo in Brazil [16]. The upper end of our estimated range (R0 = 3.1) may 

reflect the differences between disease transmission in the general population (as per 
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the above cited studies) and transmission in a crowded military camp with a 

predominance of young males. 

 

Considered collectively, these R0 estimates for pandemic influenza in various 

countries are not particularly high when compared to the R0 estimates for various 

other infectious diseases [17]. This observation provides some reassurance that if a 

strain of influenza with similar virulence were to emerge, then there would be scope 

for successful control measures. Indeed, one model, using R0 values in the 1.1 to 2.4 

range, has suggested the possibility of successful influenza pandemic control [18]. 

This was also the case for a model using R0 = 1.8 [19]. Nevertheless, at the upper end 

of the estimated range for R0, control measures may be more difficult, especially if 

public health authorities are slow to respond and they have insufficient access to 

antivirals and pandemic strain vaccines. 

  

The latent and infectious periods: The average latent and infectious periods were 

estimated to be in the range between 0.7 to 1.3 days, and 0.2 to 0.3 days, respectively. 

The infectious period is short compared to the period of peak virus shedding known to 

occur in the first 1 to 3 days of illness [20]. Other modelling work has used longer 

estimates, e.g. a mean of 4.1 days used by Longini et al. [18].  

 

The fast onset and subsequent decline of the outbreak in the Featherston Military 

Camp, as compared to a national or city-wide outbreak, might possibly be due to 

relatively close habitation and a high level of mixing. The average time for infection 

between a primary and secondary case (the serial interval) is greatly shortened in this 

case. This could explain a short apparent infectious period, and a relatively large 

proportion of the serial interval in the latent state. Another possible explanation of the 

relatively short apparent infectious period for this outbreak is that it may reflect the 

limited transmission that occurred once symptomatic individuals were hospitalised on 

diagnosis – which was the policy taken in this military camp for all cases. 

 

The lag period from diagnosed illness to death: This analysis was able to estimate an 

approximate seven-day delay from reported symptomatic illness to the date of death at 

a population level. This result is suggestive that even in this relatively young 

population (largely of military recruits), an important cause of death was likely to 

have been from secondary bacterial pneumonia – as opposed to the primary influenza 

viral pneumonia or acute respiratory distress syndrome (for which death may have 

tended to occur more promptly). This finding is consistent with other evidence that a 

large proportion of deaths from the 1918 pandemic was attributable to bacterial 

respiratory infections [21]. This picture is also somewhat reassuring as it suggests that 

much of this mortality could be prevented (with antibiotics) if a novel strain with 

similar virulence emerged in the future. 

 

 

Conclusions 
 

The R0 estimates in the 1.3 to 3.1 range are broadly consistent with others made for 

the 1918 influenza pandemic and are not particularly large relative to some other 

infectious diseases. This finding suggests that if a novel influenza strain of similar 

virulence emerged then it could potentially be controlled through the prompt use of 

major public health measures. These results also suggest that effective treatment of 
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pneumonia could result in better outcomes (lower mortality) than was experienced in 

1918. 
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Table 1. Parameters used in the SEIR incidence model* 

 

Parameter Scenario 

1 

Scenario 

2 

Scenario 

3 

Initial proportion of the population susceptible (Pis) 1.0 0.9 0.8 

Proportion of infected cases who develop symptoms 

(Pids) 
0.95 0.81 0.67 

Infectivity of asymptomatic/infectivity of 

symptomatic people (Infas) 
0.6 0.5 0.4 

Proportion of symptomatic cases who present and are 

diagnosed as infected with influenza (Psp) 
0.95 0.88 0.8 

 
*Based on plausible ranges for pandemic influenza with Scenario 1 being closer to a worse case for impact on 

health and Scenario 3 being less severe. For example, Scenario 3 assumes 20% of the population may have had 

immunity from previous influenza pandemics that may have reached New Zealand in the late 19th century – as 

suggested by Rice [2] and supported by the unusually low mortality rates in the older age groups for this pandemic 

in New Zealand [2].  

 

 

Table 2. Rate constants and epidemiological parameters corresponding to the best-fit 

models shown in Figure 1 (associated standard deviation or 95% confidence interval 

is given in brackets).  

 

Scenario β β β β (days
-1

) ν ν ν ν (days
-1

) γ γ γ γ (days
-1

) R0 Latent 

period  

TE (days) 

Infectious 

period 

ΤΙ        (days) 

1 5.3 (0.50) 1.5 (0.08) 4.2 (0.33) 1.3 (0.02) 
0.67  

(0.60, 0.74) 

0.24  

(0.21, 0.28) 

2 6.5 (0.27) 1.2 (0.04) 3.6 (0.11) 1.8 (0.04) 
0.83  

(0.78, 0.89) 

0.28  

(0.26, 0.30) 

3 10.1 (1.55) 0.8 (0.11) 3.3 (0.36) 3.1 (0.18) 
1.25  

(0.99, 1.69) 

0.30  

(0.25, 0.38) 

 

 

 

Figure 1. Observed and best-fit modelled incidence (ill cases per day) for Scenarios 1 

to 3, and best-fit gamma distribution.  

 

 

 

Figure 2. Incidence-mortality lag time distribution. 

 

 

Figure 3. Observed and best-fit modelled mortality (deaths per day) for Scenarios 1 to 

3.  
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