Influenza viruses can change in two different ways.
One is called "antigenic drift." These are small changes in the virus that happen continually over time. Antigenic drift produces new virus strains that may not be recognized by the body"e;s immune system. This process works as follows: a person infected with a particular flu virus strain develops antibody against that virus. As newer virus strains appear, the antibodies against the older strains no longer recognize the "newer" virus, and reinfection can occur. This is one of the main reasons why people can get the flu more than one time. In most years, one or two of the three virus strains in the influenza vaccine are updated to keep up with the changes in the circulating flu viruses. So, people who want to be protected from flu need to get a flu shot every year.
The other type of change is called "antigenic shift." Antigenic shift is an abrupt, major change in the influenza A viruses, resulting in new hemagglutinin and/or new hemagglutinin and neuraminidase proteins in influenza viruses that infect humans. Shift results in a new influenza A subtype or a virus with a hemagglutinin or a hemagglutinin and neuraminidase combination that has emerged from an animal population that is so different from the same subtype in humans that most people do not have immunity to the new (e.g. novel) virus. Such a a??shifta?? occurred in the spring of 2009, when a new H1N1 virus with a new combination of genes emerged to infect people and quickly spread, causing a pandemic. When shift happens, most people have little or no protection against the new virus. While influenza viruses are changing by antigenic drift all the time, antigenic shift happens only occasionally. Type A viruses undergo both kinds of changes; influenza type B viruses change only by the more gradual process of antigenic drift.??