-

nihao guest [ sign in / register ]
2024-4-16 15:40:00
Article

Gang LU, Fei-yan ZHENG, Yu-qing XIAO, Ran SHAO, Ji. Role of feline ANP32 proteins in regulating polymerase activity of influenza A virus. Journal of Integrative Agriculture, 2023.  Abstract  
submitted by kickingbird at Nov, 17, 2023 from Journal of Integrative Agriculture, 2023 (via https://www.sciencedirect.com/science/article/pii/S209531192)
Recently, increasing natural infection cases and experimental animal challenge studies demonstrated domestic cats are susceptible to multiple subtypes influenza A virus (IAV) infections. Notably, some ...

Xu Naiqing, Xinen Tang, Xin Wang, Miao Cai, Xiaowe. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology, Volume 589, 2024.  Abstract  
submitted by kickingbird at Nov, 17, 2023 from Virology, Volume 589, 2024 (via https://www.sciencedirect.com/science/article/pii/S004268222)
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its ...

Yi-na XU, Hai-ling LI, Hao-yu LENG, Chao-fan SU, S. Genetic and Biological Properties of H10Nx influenza viruses in China. Journal of Integrative Agriculture, 2023.  Abstract  
submitted by kickingbird at Nov, 17, 2023 from Journal of Integrative Agriculture, 2023 (via https://www.sciencedirect.com/science/article/pii/S209531192)
H10 subtype avian influenza viruses (AIV) have been circulating in China for forty years. H10 AIVs in China have expanded their host range from wild birds to domestic poultry and mammals, even human. Most ...

Ariful Islam, Sarah Munro, Mohammad Mahmudul Hassa. The role of vaccination and environmental factors on outbreaks of high pathogenicity avian influenza H5N1 in Bangladesh. One Health, 2023, 100655.  Abstract  
submitted by kickingbird at Nov, 17, 2023 from One Health, 2023, 100655 (via https://www.sciencedirect.com/science/article/pii/S235277142)
High Pathogenicity Avian Influenza (HPAI) H5N1 outbreaks continue to wreak havoc on the global poultry industry and threaten the health of wild bird populations, with sporadic spillover in humans and other ...

Lei R, Kim W, Lv H, Mou Z, Scherm MJ, Schmitz AJ,. Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase. Immunity. 2023 Nov 14;56(11):2621-2634.e6.  Abstract  
submitted by kickingbird at Nov, 16, 2023 from Immunity. 2023 Nov 14;56(11):2621-2634.e6 (via https://www.cell.com/immunity/fulltext/S1074-7613(23)00445-4)
There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies ...

Ma L, Zheng H, Ke X, Gui R, Yao Z, Xiong J, Chen Q. Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication. Virol Sin. 2023 Nov 13:S1995-820X(23)00136-0.  Abstract  
submitted by kickingbird at Nov, 16, 2023 from Virol Sin. 2023 Nov 13:S1995-820X(23)00136-0 (via https://www.sciencedirect.com/science/article/pii/S1995820X2)
Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed ...

Zhao Y, Chen P, Hu Y, Liu J, Jiang Y, Zeng X, Deng. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg Microbes Infect. 2023 Nov 15:2284301.  Abstract  
submitted by kickingbird at Nov, 16, 2023 from Emerg Microbes Infect. 2023 Nov 15:2284301 (via https://www.tandfonline.com/doi/full/10.1080/22221751.2023.2)
Due to the fact that many avian influenza viruses that kill chickens are not lethal to ducks, farmers are reluctant to use avian influenza inactivated vaccines on ducks. Large numbers of unvaccinated ducks ...

Xing X, Shi J, Cui P, Yan C, Zhang Y, Zhang Y, Wan. Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. Emerg Microbes Infect. 2023 Nov 15:2284294.  Abstract  
submitted by kickingbird at Nov, 16, 2023 from Emerg Microbes Infect. 2023 Nov 15:2284294 (via https://www.tandfonline.com/doi/full/10.1080/22221751.2023.2)
H5N1 avian influenza viruses bearing the clade 2.3.2.1 hemagglutinin (HA) gene have been widely detected in birds and poultry in several countries. During our routine surveillance, we isolated 28 H5N1 ...

Zhou X, Wang S, Ma Y, Li Y, Deng G, Shi J, Wang X. Rapid detection of avian influenza virus based on CRISPR-Cas12a. Virol J. 2023 Nov 13;20(1):261.  Abstract  
submitted by kickingbird at Nov, 16, 2023 from Virol J. 2023 Nov 13;20(1):261 (via https://virologyj.biomedcentral.com/articles/10.1186/s12985-)
Background: Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally among wild aquatic birds worldwide and infect domestic poultry, other birds, and ...

Goletic S, Softic A, Omeragic J, Koro-Spahic A, Ka. Molecular characterization and phylogenetic analysis of highly pathogenic H5N1 clade 2.3.4.4b virus in Bosnia and Herzegovina. Front Vet Sci. 2023 Oct 26;10:1255213.  Abstract  
submitted by kickingbird at Nov, 14, 2023 from Front Vet Sci. 2023 Oct 26;10:1255213 (via https://www.frontiersin.org/articles/10.3389/fvets.2023.1255)
Influenza A virus continues to represent a growing problem affecting mainly birds but with an increasing number of mammal transmission events reported each year. Nevertheless, molecular characterization ...

Zhu M, Zeng H, He J, Zhu Y, Wang P, Guo J, Guo J,. Reassortant H9N2 canine influenza viruses containing the pandemic H1N1/2009 ribonucleoprotein complex circulating in pigs acquired enhanced virulence in mice. Virology. 2023 Nov 7;589:109927.  Abstract  
submitted by kickingbird at Nov, 13, 2023 from Virology. 2023 Nov 7;589:109927 (via https://www.sciencedirect.com/science/article/abs/pii/S00426)
The reassortment between avian H9N2 and Eurasian avian-like (EA) H1N1 viruses may have potentially changed from avian-to-mammals adaptation. This study generated 20 reassortant viruses with the introduction ...

Zefeng Dong, etc.,al. Genome characteristics of influenza B virus in Suzhou city, 2021-2022. DOI:10.3760/cma.j.cn112866-20230202-00006.  Abstract  
submitted by kickingbird at Nov, 12, 2023 from DOI:10.3760/cma.j.cn112866-20230202-00006 (via https://rs.yiigle.com/cmaid/1456915)
Objective To understand the genome and genetic evolution characteristics of influenza B virus (FluB) in Suzhou city from July 2021 to January 2022.Methods Real-time fluorescence reverse transcription polymerase ...

Guilan Lu, etc.,al. Phylogenetic and antigenic analysis of HA gene of influenza virus B (Victoria) in Beijing during 2021-2022 surveillance season. DOI:10.3760/cma.j.cn112309-20230210-00026.  Abstract  
submitted by kickingbird at Nov, 12, 2023 from DOI:10.3760/cma.j.cn112309-20230210-00026 (via https://rs.yiigle.com/cmaid/1471834)
Objective To investigate the phylogenetic and antigenic characteristics of hemagglutinin (HA) gene of influenza B/Victoria lineage (BV) viruses in Beijing during the 2021-2022 influenza surveillance season, ...

Zhang J, Wang X, Chen Y, Ye H, Ding S, Zhang T, Li. Mutational antigenic landscape of prevailing H9N2 influenza virus hemagglutinin spectrum. Cell Rep. 2023 Nov 9;42(11):113409.  Abstract  
submitted by kickingbird at Nov, 12, 2023 from Cell Rep. 2023 Nov 9;42(11):113409 (via https://www.cell.com/cell-reports/fulltext/S2211-1247(23)014)
H9N2 influenza viruses are globally endemic in birds, and a sharp increase in human infections with H9N2 occurred during 2021 to 2022. In this study, we assess the antigenic and pathogenic impact of 23 ...

Yanhui Liu, etc.,al. Epidemiological characteristics of a case infected with avian influenza A (H5N6) virus associated with exposure to aerosol. DOI:10.3760/cma.j.issn.0254-6450.2020.03.015.  Abstract  
submitted by kickingbird at Nov, 8, 2023 from DOI:10.3760/cma.j.issn.0254-6450.2020.03.015 (via https://rs.yiigle.com/cmaid/1189351)
Objective To investigate the epidemiological and clinical characteristics of a case infected with avian influenza A (H5N6) virus associated with exposure to aerosol and provide evidence for the prevention ...

Chestakova IV, van der Linden A, Bellido Martin B,. High number of HPAI H5 virus infections and antibodies in wild carnivores in the Netherlands, 2020-2022. Emerg Microbes Infect. 2023 Dec;12(2):2270068.  Abstract  
submitted by kickingbird at Nov, 6, 2023 from Emerg Microbes Infect. 2023 Dec;12(2):2270068 (via https://www.tandfonline.com/doi/full/10.1080/22221751.2023.2)
In October 2020, a new lineage of a clade 2.3.4.4b HPAI virus of the H5 subtype emerged in Europe, resulting in the largest global outbreak of HPAI to date, with unprecedented mortality in wild birds and ...

Nguyen XD, Zhao Y, Lin J, Purswell JL, Tabler T, V. Modeling long-distance airborne transmission of highly pathogenic avian influenza carried by dust particles. Sci Rep. 2023 Sep 27;13(1):16255.  Abstract  
submitted by kickingbird at Nov, 3, 2023 from Sci Rep. 2023 Sep 27;13(1):16255 (via https://www.nature.com/articles/s41598-023-42897-2)
Highly pathogenic avian influenza (HPAI) is continuously causing significant economic losses with massive poultry depopulations. Airborne transmission of HPAI was suspected, as initial bird mortalities ...

Amano K, Kurebayashi Y, Takahashi T, Narimichi Y,. Visualizing intracellular sialidase activity of influenza A virus neuraminidase using a fluorescence imaging probe. J Virol Methods. 2023 Oct 30:114838.  Abstract  
submitted by kickingbird at Nov, 3, 2023 from J Virol Methods. 2023 Oct 30:114838 (via https://www.sciencedirect.com/science/article/pii/S016609342)
In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains ...

Rijnink WF, Stadlbauer D, Puente-Massaguer E, Okba. Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses. J Virol. 2023 Nov 2:e0164622.  Abstract  
submitted by kickingbird at Nov, 3, 2023 from J Virol. 2023 Nov 2:e0164622 (via https://journals.asm.org/doi/10.1128/jvi.01646-22)
Improved broad-spectrum influenza virus vaccines are desperately needed to provide protection against both drifted seasonal and emerging pandemic influenza A viruses (IAVs). Antibody-based protection from ...

Sun W, Xu J, Wang Z, Li D, Sun Y, Zhu M, Liu X, Li. Clade 2.3.4.4 H5 chimeric cold-adapted attenuated influenza vaccines induced cross-reactive protection in mice and ferrets. J Virol. 2023 Nov 2:e0110123.  Abstract  
submitted by kickingbird at Nov, 3, 2023 from J Virol. 2023 Nov 2:e0110123 (via https://journals.asm.org/doi/10.1128/jvi.01101-23)
Clade 2.3.4.4 H5Nx subtype avian influenza viruses (AIVs) have circulated in poultry and wild birds worldwide. Recently, an increasing number of H5Nx human infection cases have been reported occurred. ...

5117 items, 20/Page, Page[10/256][|<<] [|<] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [>|] [>>|]

Related Pages:

Browse by Category
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn