Seasonal influenza epidemics and occasional pandemics threaten public health worldwide. New alternative strategies for generating recombinant viruses of vaccine potential are needed. Interestingly, influenza viruses circulating in different hosts have been found to have distinct codon usage patterns, which may reflect host adaptation. We therefore hypothesized that it is possible to make a human seasonal influenza virus that is specifically attenuated in human cells, but not in eggs, by converting its codon usage similar to those observed from avian influenza viruses. This approach might help to generate human live attenuated viruses without affecting their yield in eggs. To test this hypothesis, over 300 silent mutations were introduced into the genome of a seasonal H1N1 influenza virus. The resultant mutant was significantly attenuated in mammalian cells and mice, yet it grew well in embryonated eggs. A single dose of intranasal vaccination induced potent innate, humoral and cellular immune responses, and the mutant could protect mice against homologous and heterologous viral challenges. The attenuated mutant could also be used as a vaccine master donor strain by introducing hemagglutinin and neuraminidase genes derived from other strains. Thus our approach is a successful strategy to generate attenuated viruses for future vaccine application.