Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform

We exploit the features of a virus-like particle, adenoviral dodecahedron (Ad Dd), for engineering a multivalent vaccination platform carrying influenza epitopes for cell-mediated immunity. The delivery platform, Ad Dd, is a proteinaceous, polyvalent, and biodegradable nanoparticle endowed with remarkable endocytosis activity that can be engineered to carry 60 copies of a peptide. Influenza M1 is the most abundant influenza internal protein with the conserved primary structure. Two different M1 immunodominant epitopes were separately inserted in Dd external positions without destroying the particles´ dodecahedric structure. Both kinds of DdFluM1 obtained through expression in baculovirus system were properly presented by human dendritic cells triggering efficient activation of antigen-specific T cells responses. Importantly, the candidate vaccine was able to induce cellular immunity in vivo in chickens. These results warrant further investigation of Dd as a platform for candidate vaccine, able to stimulate cellular immune responses.