Efforts to develop new antiviral chemotherapeutic approaches are focusing on compounds that target either influenza virus replication itself or host factor(s) that are critical to influenza replication. Host protease mediated influenza hemagglutinin (HA) cleavage is critical for activation of virus infectivity and as such is a chemotherapeutic target. Influenza pathogenesis involves a "vicious cycle" in which host proteases activate progeny virus which in turn amplifies replication and stimulates further protease activities which may be detrimental to the infected host. Aprotinin, a 58 amino acid polypeptide purified from bovine lung that is one of a family of host-targeted antivirals that inhibit serine proteases responsible for influenza virus activation. This drug and similar agents, such as leupeptin and camostat, suppress virus HA cleavage and limit reproduction of human and avian influenza viruses with a single arginine in the HA cleavage site. Site-directed structural modifications of aprotinin are possible to increase its intracellular targeting of cleavage of highly virulent H5 and H7 hemagglutinins possessing multi-arginine/lysine cleavage site. An additional mechanism of action for serine protease inhibitors is to target a number of host mediators of inflammation and down regulate their levels in virus-infected hosts. Aprotinin is a generic drug approved for intravenous use in humans to treat pancreatitis and limit post-operative bleeding. As an antiinfluenzal compound, aprotinin might be delivered by two routes: (i) a small-particle aerosol has been approved in Russia for local respiratory application in mild-to-moderate influenza and (ii) a proposed intravenous administration for severe influenza to provide both an antiviral effect and a decrease in systemic pathology and inflammation.